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ABSTRACT
Wide-area stream analytics is commonly being used to extract
operational or business insights from the data issued from multi-
ple distant datacenters. However, timely processing of such data
streams is challenging because wide-area network (WAN) band-
width is scarce and varies widely across both different geo-locations
(i.e., spatially) and points of time (i.e., temporally). Stream analytics
desirable under a WAN setup requires the consideration of path di-
versity and the associated bandwidth from data source to sink when
performing operator task placement for the query execution plan.
It also has to enable fast adaptation to dynamic resource conditions,
e.g., changes in network bandwidth, to keep the query execution
stable.

We present SWAN, a WAN stream analytics engine that incorpo-
rates two key techniques to meet the aforementioned requirements.
First, SWAN provides a fast heuristic model that captures WAN
characteristics at runtime and evenly distributes tasks to nodes
while maximizing the network bandwidth for intermediate data.
Second, SWAN exploits a stream relaying operator (or RO) to extend
a query plan for better facilitating path diversity. This is driven by
our observation that oftentimes, a longer path with more communi-
cation hops provides higher bandwidth to reach the data sink than
a shorter path, allowing us to trade-off query latency for higher
query throughput. SWAN stretches a given query plan by adding
ROs at compile time to opportunistically place it over such a longer
path. In practice, throughput gains do not necessarily lead to signifi-
cant latency increases, due to higher network bandwidth providing
more in-flight data transfers. Our prototype improves the latency
and the throughput of stream analytics performances by 77.6% and
5.64×, respectively, compared to existing approaches, and performs
query adaptations within seconds.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Distributed systems
organizing principles; • Information systems → Data man-
agement systems; • Networks → Network reliability.
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1 INTRODUCTION
With the surging demand for global services, service providers are
increasingly demanding wide-area stream data analytics in order to
extract information from the global data generated from multiple
distant datacenters [11]. For example, global services need a real-
time log processing system for monitoring systems from thousands
of distant servers to ensure their SLOs [9, 13]. Also, global services
like Twitter [11] need to process distant data in real-time to keep
track of global news and social media. Many of such applications
often require processing the data with high throughput and low
latency as extracting timely information means more value for
service providers.

A wide-area analytics system is typically composed of multi-
ple geo-distributed edge clusters and datacenters connected by
wide-area networks (WAN) [6, 8, 19, 28]. In this setup, the vari-
ability and unpredictable nature of WAN bandwidths make it chal-
lenging to achieve both high throughput and low latency. WAN
exhibits diverse levels of peer-to-peer (P2P) bandwidths depend-
ing on the geo-location, each of which can change in the order of
minutes [25, 28]. Essentially, a streaming engine for WAN analyt-
ics should be adaptive to these spatial and temporal variability of
network bandwidths.

Prior works that consider the spatial variability of networks
under wide-area data analytics often focus on short-lived batch
processing while reducing network data transfers to lower the
network budget and assume that network bandwidth is relatively
stable throughout the query execution [17, 22, 24]. On the other
hand, existing WAN-aware stream processing systems that run
long-running streaming queries try to perform centralized process-
ing after adaptively collecting data to a single data center. Such
an approach requires users to trade-off the query output accu-
racy for performance through pre-aggregation, degradation, and
statistical approximation [7, 19, 28], especially when transmitting
a large volume of raw data under limited network bandwidths.
Despite their great effectiveness, these approaches are frequently
application-dependent and may not apply generally. For queries
that require high accuracies, such as fraud detection and billing
queries, any loss in the query output accuracy may result in un-
desirable reliability or additional costs. Moreover, determining the
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right accuracy-performance trade-off typically relies heavily on the
expertise of the analyst and requires parameter tuning for each of
the different workloads, which may be cumbersome.

To overcome the shortcomings of prior approaches, we investi-
gate a solution that can effectively distribute the query workload
over the nodes without loss of query accuracy. In particular, there
are multiple ways to distribute the tasks of an analytics workload
over geo-distributed computing resources. Our approach for WAN
analytics seeks to avoid exercising a path from data source to sink
that provides poor bandwidth that comes from very different P2P
bandwidths. Moreover, the system aims to adapt the task placement
quickly to keep task executions stable despite changing network
bandwidths [2, 3, 16]. To achieve the goals, we profile networks
to obtain a holistic view on the network path diversity, and keep
monitoring the network usage so that more resources could be
spent on the networks that need more attention and the system
can rapidly adapt to the abrupt changes in resource conditions.

In this paper, we propose SWAN, a new WAN stream analytics
engine that achieves the goals by incorporating two key techniques.
First, instead of trying to make an ultimate task scheduling solution,
SWAN aims to alter the focus on providing a fast solution to keep
the latency low, by providing a speed-oriented solution based on
a fast heuristic model. Next, SWAN improves the quality of the
generated solution by providing more flexibility to task placements
through leveraging longer network paths that exhibit higher band-
widths. We have implemented SWAN on Apache Nemo [20, 27] and
evaluated it with the NEXMark benchmark suite [21], a popular
benchmark suite including multiple queries focusing on different
areas of stream analytics. Within seconds, SWAN reduces the aver-
age job latency of the queries by 77.6% and increases the throughput
rate by 5.64× over using the state-of-the-art distributed query exe-
cution.

2 BACKGROUND AND RELATED WORK
2.1 Distributed Streaming Analytics

Query model. We adopt the Apache Beam [1] dataflow program-
ming model to define a query. On our system, a query is expressed
as a directed acyclic graph (DAG), where each vertex represents
a stream operation, and edges represent the dataflow dependency
between the operations. Stream operations that simply process an
input record and emit its result to downstream operations (e.g.,
map, filter) are connected with one-to-one dependencies, while
operations that accumulate data from multiple source tasks (e.g.,
groupByKey, join) require shuffle dependencies ahead of perform-
ing the transform. Systems often group the operations connected
with one-to-one dependencies as a stage, to pipeline the operations
of a task together on a particular machine to reduce the data trans-
fer. These stages are split into parallel tasks to distribute the job
to a cluster of multiple machines. Unlike one-to-one dependencies,
shuffle dependencies require data transfers over the network from
multiple upstream tasks placed on different machines. In an envi-
ronment with limited network resources, shuffle operations have
to occur on the right network in order to prevent the query from
suffering network bottlenecks.

Figure 1: A CDF of networks showing the spatial variation
of a geo-distributed cluster.

Stream operator placement. In conventional stream processing
systems [4, 5, 12, 18, 26], tasks are generally scheduled in a round-
robin fashion for an even distribution of tasks across executors.
In order to perform custom task placements on such systems, one
must annotate node names on the individual tasks, with the features
supported by resource managers. Since existing stream processing
systems generally run on local clusters equipped with an excess
amount of network resources, they focus on optimizing CPU and
memory resources. In order to implement custom scheduling poli-
cies, existing systems require modifications on the scheduling layer,
as they are often designed with simple support for batch and stream
modes for scheduling.

2.2 Streaming on WAN
Existing policies designed for local clusters result in significant per-
formance loss and inefficient resource utilization under WAN, due
to the fundamental differences in network environments [17, 22, 24].
While the superfluous network infrastructure on local clusters en-
ables datacenters to reserve network resources for network traffics
from particular machines, long-distance cables installed across con-
tinents must be shared by multiple different network traffics due to
the limited infrastructure. Due to such nature of WAN networks, it
exhibits unpredictable variability in both space and time. We char-
acterize the network with two aspects, into spatial and temporal
variations, to gain insights on how to optimize streaming engines
for WAN environments.

Spatial variability. Spatial variations are caused by the distances
and the different network infra connecting the clusters. The infras-
tructures (e.g., cables, satellites) are usually managed by the internet
service providers (ISPs) to connect different LAN networks together.
As the infrastructures are each designed with different technologies
and budgets, a large diversity exists among the different paths over
the WAN. Figure 1 shows the diversity of network bandwidths in a
geo-distributed cluster of 16 nodes (i.e., 16𝐶2 = 120 connections),
scattered around 8 different sites over 3 continents (details in § 4.1).
Here, we can witness varying average bandwidths as low as about
500KB/s up to 900MB/s, depending on the different locations and
distance between the sites, while most network connections show
average bandwidths below 100MB/s.

When suggesting a network path between two sites, the ISPs
usually provide the path with the lowest latency, but this does not
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Figure 2: A graph showing the temporal variation of a net-
work through time.

necessarily have the highest bandwidth. If the size of the data to
be transferred is larger than the provided bandwidth, it results in
network congestion, which causes the latency to rise, as the large
traffic has to wait in the queue before being processed. Therefore, it
is important to find a network connection that has sufficient band-
width to accommodate the expected traffic. Subsequently, operator
placement decisions need to appropriately made to effectively har-
vest the available bandwidth across the globe.

Temporal variability. Temporal variations are caused by the high
concentration of network traffics through the limited bandwidths
of WAN settings. Due to the large number of network users shar-
ing the provided WAN bandwidths, network patterns are highly
unpredictable and display diverse patterns over time. Also, the long
distance within theWAN adds other physical factors that contribute
to the instability of the network. While WAN networks over longer
distances often show more instability compared to the ones that are
relatively shorter, there also exists heterogeneous variability among
the participating regions. WAN network bandwidth patterns can
be transient or permanent, and steep or gradual, depending on the
cause of the effect, and can occur in bandwidth rises or drops, as
shown in Figure 2. Our observations on a geo-distributed cluster
show that over half of WAN networks suffer from bandwidth drops
of over 20% every 6 minutes on average.

While bandwidth rises do not directly affect the stream analytics
performance, bandwidth drops result in increased latency and lower
throughput if not handled appropriately. Permanent changes or
significant bandwidth drops are particularly considered detrimental
and require the system to adapt the task placement to mitigate
potential network bottlenecks.

Prior approaches and limitations. Existing data processing sys-
tems designed for WAN environments focus on a single type of
variation depending on the type of data that they target. Existing
systems that target short-lived batch processing jobs [17, 22, 23]
focus on the spatial variability to reduce the network data transfers
for lower network budget and assume stable network throughout
the job.

Regardless, the question of how to perfectly schedule tasks to
the geo-distributed nodes while considering all network conditions
and task dependencies altogether is known to be NP-hard [14, 15].
Existing works often depend on ILP solvers to schedule tasks in

a way that minimizes the longest link transfer finish time of the
reduce tasks [17, 22]. Specifically, they optimize the job by observ-
ing each stages one after another, to find the right proportion of
tasks to place for each node of the geo-distributed cluster. Never-
theless, scheduling tasks using ILP solvers are still significantly
slow compared to other conventional scheduling methods despite
their simplicity of illustrating the problem [17]. The optimization
overhead depends on the length of the query execution plan, but
on average, it is 25× slower than conventional scheduling for NEX-
Mark streaming benchmark queries (§ 4.3). Since stream processing
has strict latency requirements, it is difficult to adopt an ILP model
to effectively handle the temporal variation.

On the other hand, existing systems that target WAN-aware
stream processing [8, 19, 28] describe methods to adaptively col-
lect data to a single data center. In order to do so, such systems
propose effective ways to pre-aggregate, degrade, and statistically
estimate the raw data and trade the output quality for better perfor-
mance over limited bandwidths. However, while such optimizations
are very effective in specific applications (e.g., video processing),
accuracy-sensitive applications, such as fraud detection, billing
queries, and global stock or transactional analysis, cannot adapt
such methods, as lower accuracy can often lead to undesirable relia-
bility and additional problems for such queries [6, 8, 19, 28]. In order
to bypass such problems, it is required for the WAN-aware stream
processing systems to be designed to run on tasks distributed across
a geo-distributed cluster, in a way that can rapidly adapt to the
altering conditions.

3 SWAN
3.1 Insights

Good heuristics over an expensive solver. While ILPs provide effi-
cient simple abstractions for materializing the optimization problem
of distributing tasks to geo-distributed nodes of a cluster to solve
the spatial variability, ILP solvers are too slow to be dynamically
used for stream processing systems. ILP could be a good solution
if WAN networks do not possess temporal variability and the opti-
mization occurs just a single time. However the 25× overhead is not
trivial with job latency if the optimization is to occur repeatedly. In
order to mitigate the optimization overhead, we propose using a
fast heuristic model that effectively captures WAN characteristics.
In building the heuristic model, we aim to put our focus on two pri-
mary aspects. First, we aim to find a model that accurately captures
the network costs, based on the number of upstream and down-
stream tasks and the measured network bandwidths, and minimize
the network cost throughout the stream analytics job. Second, we
try to distribute an even number of tasks to each nodes if possible,
in order to prevent computational bottlenecks that can occur when
the distribution of tasks are too concentrated on a specific set of
nodes.

Query rewriting to fully cover promising longer paths. Wide-area
networks are usually managed by ISPs, who, by default, provide the
network with the minimum latency upon each request. However,
this does not relate to higher bandwidth. Figure 4 shows an example
of a network connection between Seoul and Paris that exhibits
more network bandwidth if travelled through New York, instead
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Figure 3: An overall architecture of the SWAN system.

of travelling directly to each other. When provided with a low-
latency network with limited bandwidths, the data transfer can
suffer from even more latency due to the congestion caused by
excess network traffics. Moreover, limited bandwidths lead to full
usage of the bandwidth, leaving less room to act as a buffer upon
sudden small bandwidth drops with temporal variations. In order
to prevent such cases and leverage the network connections with
more bandwidths, we perform query rewriting to cover longer paths
that are more promising for our workload. In order to capture such
network connections, we enable our system to extend the query
execution plan with relay operators that simply pass on the data
from the uplinks to the downlinks.

3.2 Design Overview
We capture these insights in our system, SWAN, which uses a
fast and effective heuristic model for placing tasks on the geo-
distributed cluster, with extended optimization techniques to rewrite
queries and expand the query execution plan to capture promising
longer paths with more bandwidths. Figure 3 shows the key system
components involved in the scheduling and optimization of the
query execution plan. Once a dataflow application is submitted to
SWAN, the compiler performs basic optimizations, such as stage
partitioning and determining the number of tasks for the workload,
and builds the application into a physical execution plan, which is
composed of a group of tasks. With the query execution plan, the
SWAN planner collects network metrics and the total number of
tasks and their dependencies, to calculate the predicted network
cost, and determines where to place each of the tasks. The sched-
uler takes the physical plan with the placement information and
distributes them to the geo-distributed cluster in the way specified
by the plan.

When the latency increases in the workload, the metric monitor
triggers dynamic optimization, which submits a modified physical
plan with the new placement specification to the scheduler. The
scheduler fires an optimization mark, which is a special implemen-
tation of a watermark that triggers each tasks to checkpoint their
data to be migrated according to the new placement specification.
Each tasks are sequentially migrated to replay the data from the
point of the optimization mark.

3.3 Operator Placement Algorithm
A stream processing application typically has source tasks fixed on
specific sites. The tasks of children stages can predict the potential
network cost that it incurs if placed on a specific site 𝑠 ∈ 𝑆 among all
sites 𝑆 , based on the number of upstream tasks on the upstream site

Figure 4: An example of a geo-distributed cluster setup.

𝑢 ∈ 𝑆 and the given bandwidth between the sites 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑠𝑢 . We
also find the appropriate number of task slots for each site to evenly
distribute tasks among the multiple sites. Based on the calculation
of these two values, we distribute tasks according to the ratio of
the number of remaining slots divided by the expected network
cost of a site. This way, we distribute more tasks to the sites where
the network cost is smaller, while also distributing tasks to sites
that have more task slots left. We describe the logic above with the
following equations:

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 =
𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠𝑠 − 𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡𝑠

𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑐𝑜𝑠𝑡𝑠
, (1)

𝑠 .𝑡 . 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑐𝑜𝑠𝑡𝑠 =
∑︁
𝑢∈𝑆

𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡𝑢
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑠𝑢

(2)

𝑎𝑛𝑑 𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠𝑠 =
∑︁

𝑛𝑜𝑑𝑒∈𝑠
⌈
∑
𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡∑
𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

+ 1
2
⌉ (3)

To understand the scheduling algorithm, we use an example on a
WAN setting illustrated on Figure 4, where three nodes are allocated
on each of the three sites, making it a cluster of

∑
𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 = 9

nodes. Let us assume a case of executing a three-stage application,
where 8 tasks are generating source data in stage 0, followed by
5 tasks in stage 1, and 3 tasks in stage 2. Since the application
consists of a total of 16 tasks to be placed on a total of 9 nodes,
we set the upper limit for the number of tasks on each node to
⌈
∑
𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡∑
𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡 + 1

2 ⌉ = ⌈ 169 + 1
2 ⌉ = 3, which results in a total of

3 × 3 = 9 slots for each site. Specifying task slots enables us to
prevent tasks from being too crowded on a specific site.

Let us assume a case where 3 data source tasks are placed in
Seoul and NY, while 2 data source tasks are placed in Paris. In order
to schedule the following 5 tasks in stage 1, we first observe the
remaining slots for each site, where a total of 9− 3 = 6 slots are left
in Seoul and NY and 9 − 2 = 7 slots in Paris. We next calculate the
network cost for a potential individual task if it was to be placed on
a specific site, described in Equation 2. By this calculation, NY, Paris,
and Seoul has the cost of 2

18 +
3
7 ≈ 0.5, 3

18 +
3
2 ≈ 1.7, and 3

7 +
2
2 ≈ 1.4,

respectively. With these numbers, we find the target ratio of task
distribution as described in Equation 1. This way, NY, Paris, and
Seoul has the target distribution ratio of 6

0.5 : 7
1.7 : 6

1.4 ≈ 3 : 1 : 1.
Consequently, 3 tasks of Stage 1 are scheduled on NY, and Seoul
and Paris are each scheduled with a single task.

The remaining 3 tasks of stage 2 are scheduled by repeating the
steps above. The remaining slots are 3, 6, 5, respectively for NY,
Paris, and Seoul. Network costs are 1

18 + 1
7 ≈ 0.2, 3

18 + 1
2 ≈ 0.7, and

3
7 + 1

2 ≈ 0.9 for NY, Paris, and Seoul. According to the logic above,
the target distribution ratio is 3

0.2 : 6
0.7 : 5

0.9 ≈ 6 : 3 : 2 ≈ 2 : 1 : 0,
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and hence 2 tasks are scheduled on NY and a single task is scheduled
in Paris.

Our operator placement algorithm can be generally applied to
any physical plan consisting of multiple tasks, to place them on an
arbitrary number of nodes placed on different sites. In our example,
we can observe that NY has the best network conditions among
the three sites, and our scheduling algorithm places a total of 8
tasks on NY, while placing 4 tasks each in Paris and Seoul. This
way, data can flow into the direction of the site with the most
available bandwidths, while preventing a specific site from having
too many tasks. While our example illustrates a small example,
the slot allocation comes into great usage when the scale of the
physical plan grows to hundreds of tasks.

3.4 Query Rewriting
Now that we have a query execution plan with annotations spec-
ifying the nodes to place each of the tasks on, we can do further
optimizations on the scheduling. On the setting illustrated in Fig-
ure 4, we can see that the network between Seoul and Paris exhibit
a much narrower bandwidth compared to the bandwidth between
two areas through New York. Although we try to use the high
bandwidths as much as possible with our operator placement al-
gorithm, a few tasks inevitably have to transfer data through the
low bandwidth between Seoul and Paris. In such cases, we provide
an extra option to insert a relay task between the tasks in order to
be able to send the data through the network going through New
York, instead of using the original option.

Nevertheless, if too many tasks transfer data over the high band-
width, that bandwidth can also be congested due to the large number
of traffic. Therefore, we choose to insert the relay task only if the
average bandwidth among the tasks transferring data through the
network becomes higher with the new option:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑙𝑎𝑦_𝑛𝑒𝑡𝑤𝑜𝑟𝑘∑
𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡𝑟𝑒𝑙𝑎𝑦_𝑛𝑒𝑡𝑤𝑜𝑟𝑘

>
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙∑
𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

(4)

Since the major problems in WAN-based analytics occur with
lower bandwidths that are intolerable with temporal fluctuations,
inserting relay tasks do not significantly increase the latency, as
with higher bandwidth, we can allow higher degree of concurrent
stream data transfers.

4 EVALUATION
4.1 Methodology

Testbed setup. We deploy our system on 16 GCP Compute Engine
e2-standard-4 nodes, each equipped with 4vCPUs and 16GB of
memory. We launch 2 nodes on each of the 8 regions on three
continents: Taiwan, Mumbai (Asia), Finland, Belgium, Netherlands
(Europe), Iowa, South Carolina, and Oregon (America). All nodes
run Ubuntu 18.04.

Workloads. We measure the performance of queries from the
NEXMark Benchmark Suite [21], a popular benchmark containing a
large variation of stream processing queries representing an online
auction system. Among the different queries, we spotlight query 4,
which calculates for the average price for each category, illustrating

Figure 5: A graph of the 95th percentile latency of the work-
load after triggering optimization at time = 0 of execution of
NEXMark benchmark query 4.

an example of using join and aggregation, which involves shuffle
operations.

Prior approaches in comparison. In addition to our implementa-
tion of the scheduling policy for operator placement and query
rewriting, we also implement prototypes of existing ILP-based so-
lutions described in both Clarinet [22] and WASP [10]. Among
the ILP solutions, I have included the ILP solutions that perform
better among the two solutions for the results. In order to com-
pare the effectiveness of the heuristic model, we also run the con-
ventional computation-oriented scheduling algorithm for compari-
son [4, 20, 27].

Performance metrics. Wemeasure the latency and the throughput
of the stream analytics for different queries. For measuring latency,
we fix the throughput at a fixed input rate and observe the 95th
percentile latency changing over time. For measuring throughput,
we maximize the input rate, and observe the system performance
under the given conditions.

4.2 Throughput and Latency
Figure 5 shows a 95th percentile latency graph comparing the
heuristic model with ILP-based model and the conventional sched-
uling policy over time. In this workload, we set the input rate to
100K events per second, which is about 10MB/s in its actual size. On
the graphs, we can see that ILP-based models exhibit the slowest
starting time, displaying high latency at the beginning of the work-
load. As the time goes on, it performs better than the conventional
approach, which gradually degrades over time, as it is designed
without the consideration of WAN networks. The heuristic model
on SWAN exhibits some latency at the beginning of the job com-
pared to the conventional approach, but the latency is negligible
compared to ILP solvers. Among the different solutions, SWAN
shows the most stable overall latency throughout the workload,
displaying its effectiveness for optimizing operator placement on
appropriate WAN.

4.3 Query Placement Speed
Figure 6 displays a graph comparing the different approaches of the
scheduling algorithms. As described earlier, we can witness a huge
overhead, ranging from 20× up to 32× overhead in both ILP cases,
compared to the simple heuristic algorithm described in § 3.3. We
can witness ILPs suffering from higher overheads with larger query
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Figure 6: A graph comparing the scheduling overhead of the
different approaches.

Figure 7: A graph of the throughput of the data transfer
rate with and without the relay task insertion in NEXMark
benchmark query 4.

execution plans for queries 4, 13, and 14, with 𝜎 = 1747𝑚𝑠 and
𝜎 = 1824𝑚𝑠 each, while the heuristic model exhibits 𝜎 = 46.2𝑚𝑠

throughout the list of different queries.

4.4 Effect of Query Rewriting
In order to spotlight the effect of relay tasks upon query rewriting,
we measure the data transfer rate of the workload over time for a
workload with inserted relay tasks, and another without the opti-
mization, as shown in Figure 7. We launch the job with maximum
input rate, and observe the data transfer rate for the workload. On
the graph, we can see that the throughput with the insertion of
the relay task shows much better performance compared to the
original option. While the throughput rate gradually decreases with
the network bottleneck for both options, the relay-inserted work-
load always displays superior performance for the data transfer
compared to the original approach.

5 CONCLUSION
In this paper, we present SWAN, a stream processing system tai-
lored for distributed stream analytics on geo-distributed environ-
ments. We point out the problems of spatial and temporal varia-
tions that co-exist in WAN settings, and discuss a fast and effective
heuristic-based model to solve the problem of scheduling tasks on
the different nodes with heterogeneous network conditions in a
geo-distributed cluster. In addition, we also discuss a way to opti-
mize the solution further, to add relay tasks appropriately at points
where the network can be further optimized by utilizing longer
network paths that exhibit more bandwidths, to bypass original

supplies of low-bandwidth networks. Our experimental evaluations
on latency and throughput show a 77.6% reduction in the average
job latency and a 5.64× increase in the throughput rate within
seconds.

ACKNOWLEDGMENTS
This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea
government(MSIT) (No.2015-0-00221, Development of a Unified
High-Performance Stack for Diverse Big Data Analytics).

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflow model: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. (2015).

[2] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
Effective straggler mitigation: Attack of the clones. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). 185–198.

[3] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi
Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-Reduce
Clusters using Mantri. In 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 10).

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[5] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. 2012. Streamcloud: An elastic and scalable data
streaming system. IEEE Transactions on Parallel and Distributed Systems 23, 12
(2012), 2351–2365.

[6] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. 2015. Optimizing
grouped aggregation in geo-distributed streaming analytics. In Proceedings of
the 24th International Symposium on High-Performance Parallel and Distributed
Computing. 133–144.

[7] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. 2016. Trading
timeliness and accuracy in geo-distributed streaming analytics. In Proceedings of
the Seventh ACM Symposium on Cloud Computing. 361–373.

[8] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018. Videoedge: Processing
camera streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 115–131.

[9] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling
Data-Driven Quality of Experience Optimization Using Group-Based Exploration-
Exploitation. In 14th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17). 393–406.

[10] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2020. WASP: wide-area
adaptive stream processing. In Proceedings of the 21st International Middleware
Conference. 221–235.

[11] Kalev Leetaru, Shaowen Wang, Guofeng Cao, Anand Padmanabhan, and Eric
Shook. 2013. Mapping the global Twitter heartbeat: The geography of Twitter.
First Monday (2013).

[12] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou.
2016. StreamScope: Continuous Reliable Distributed Processing of Big Data
Streams. In 13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16). 439–453.

[13] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul
Mahajan, Jitendra Padhye, and Ming Zhang. 2016. Efficiently delivering online
services over integrated infrastructure. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). 77–90.

[14] Monaldo Mastrolilli and Ola Svensson. 2008. (Acyclic) job shops are hard to
approximate. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. IEEE, 583–592.

[15] M MONALDO and S OLA. 2009. Improved bounds for flow shop scheduling.
ICALP.

[16] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making sense of performance in data analytics frameworks. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
293–307.

[17] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data



SWAN: WAN-aware Stream Processing on Geographically-distributed Clusters APSys ’22, August 23–24, 2022, Virtual Event, Singapore

analytics. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 421–
434.

[18] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang,
Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013. Timestream: Reliable stream
computation in the cloud. In Proceedings of the 8th ACM European Conference on
Computer Systems. 1–14.

[19] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freed-
man. 2014. Aggregation and Degradation in JetStream: Streaming Analytics in
the Wide Area. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). 275–288.

[20] Won Wook Song, Youngseok Yang, Jeongyoon Eo, Jangho Seo, Joo Yeon Kim,
Sanha Lee, Gyewon Lee, Taegeon Um, Haeyoon Cho, and Byung-Gon Chun. 2021.
Apache Nemo: A Framework for Optimizing Distributed Data Processing. ACM
Transactions on Computer Systems (TOCS) 38, 3-4 (2021), 1–31.

[21] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. NEX-
Mark—A Benchmark for Queries over Data Streams DRAFT. Technical Report.
Technical report, OGI School of Science & Engineering at OHSU, Septembers.

[22] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016.
CLARINET:WAN-Aware Optimization for Analytics Queries. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 435–450.

[23] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Kon-
stantinos Karanasos, Jitendra Padhye, and George Varghese. 2015. Wanalytics:
Geo-distributed analytics for a data intensive world. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1087–1092.

[24] Ashish Vulimiri, Carlo Curino, P Brighten Godfrey, Thomas Jungblut, Jitu Padhye,
and George Varghese. 2015. Global analytics in the face of bandwidth and
regulatory constraints. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 323–336.

[25] Hao Wang, Di Niu, and Baochun Li. 2018. Dynamic and decentralized global
analytics via machine learning. In Proceedings of the ACM Symposium on Cloud
Computing. 14–25.

[26] Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream
computation in the cloud. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 723–734.

[27] Youngseok Yang, Jeongyoon Eo, Geon-Woo Kim, Joo Yeon Kim, Sanha Lee, Jangho
Seo, Won Wook Song, and Byung-Gon Chun. 2019. Apache nemo: A framework
for building distributed dataflow optimization policies. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). 177–190.

[28] Ben Zhang, Xin Jin, Sylvia Ratnasamy, JohnWawrzynek, and Edward A Lee. 2018.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 236–252.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Distributed Streaming Analytics
	2.2 Streaming on WAN

	3 SWAN
	3.1 Insights
	3.2 Design Overview
	3.3 Operator Placement Algorithm
	3.4 Query Rewriting

	4 Evaluation
	4.1 Methodology
	4.2 Throughput and Latency
	4.3 Query Placement Speed
	4.4 Effect of Query Rewriting

	5 Conclusion
	Acknowledgments
	References

