
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Sponge: Fast Reactive Scaling for Stream
Processing with Serverless Frameworks

Won Wook Song, Seoul National University; Taegeon Um, Samsung Research;
Sameh Elnikety, Microsoft Research; Myeongjae Jeon, UNIST; Byung-Gon Chun,

Seoul National University and FriendliAI
https://www.usenix.org/conference/atc23/presentation/song

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks

Won Wook Song
Seoul National University

Taegeon Um
Samsung Research

Sameh Elnikety
Microsoft Research

Myeongjae Jeon∗

UNIST

Byung-Gon Chun∗

Seoul National University and FriendliAI

Abstract
Streaming workloads deal with data that is generated in real-
time. This data is often unpredictable and changes rapidly
in volume. To deal with these fluctuations, current systems
aim to dynamically scale in and out, redistribute, and migrate
computing tasks across a cluster of machines. While many
prior works have focused on reducing the overhead of system
reconfiguration and state migration on pre-allocated cluster
resources, these approaches still face significant challenges
in meeting latency SLOs at low operational costs, especially
upon facing unpredictable bursty loads.

In this paper, we propose Sponge, a new stream process-
ing system that enables fast reactive scaling of long-running
stream queries by leveraging serverless framework (SF) in-
stances. Sponge absorbs sudden, unpredictable increases in
input loads from existing VMs with low latency and cost by
taking advantage of the fact that SF instances can be initiated
quickly, in just a few hundred milliseconds. Sponge efficiently
tracks a small number of metrics to quickly detect bursty loads
and make fast scaling decisions based on these metrics. More-
over, by incorporating optimization logic at compile-time
and triggering fast data redirection and partial-state merging
mechanisms at runtime, Sponge avoids optimization and state
migration overheads during runtime while efficiently offload-
ing bursty loads from existing VMs to new SF instances. Our
evaluation on AWS EC2 and Lambda using the NEXMark
benchmark shows that Sponge promptly reacts to bursty input
loads, reducing 99th-percentile tail latencies by 88% on aver-
age compared to other stream query scaling methods on VMs.
Sponge also reduces cost by 83% compared to methods that
over-provision VMs to handle unpredictable bursty loads.

1 Introduction

Stream queries continuously process real-time data to extract
insights and make business-critical decisions, such as analyz-
ing real-time logs to extract statistics, detect anomalies, and

∗ Corresponding authors.

provide notifications [2, 6, 29, 48, 52]. Latency is an essential
service level objective (SLO) in these streaming workloads,
as faster up-to-date results mean more value. Stream systems
are expected to run 24/7 while meeting their SLOs [53].

Meanwhile, stream systems regularly face significant chal-
lenges due to sudden, unpredictable bursts of input loads
caused by random events, e.g., influencer tweets, breaking
news, and natural disasters [46,47]. These bursts can abruptly
increase the input load by more than 10× in just a few sec-
onds [11, 17, 26, 37, 56]. If stream processing systems do
not quickly acquire additional computing resources that can
handle the bursty loads and do not promptly redistribute the
load to the newly allocated computing resources, events will
soon pile up on the existing resources, leading to cascading
impacts on query latencies that can have fatal consequences
such as reduced user satisfaction and revenues [48].

One approach to quickly acquiring additional computing
resources is to over-provision resources. Existing work such
as Rhino [18], Megaphone [25], and Chronostream [55] builds
efficient stream load redistribution mechanisms by harness-
ing over-provisioned resources to minimize latency spikes on
load bursts. For instance, Megaphone [25] smoothly migrates
stream query loads to extra resources during stable load in
preparation for load spikes. However, over-provisioning solu-
tions can be costly and inefficient, as a significant amount of
resources will remain idle for most of the time.

Cloud services can reduce operational costs by offering on-
demand resource allocations. Existing scaling approaches for
on-demand resources dynamically migrate stream operator
instances, in units of parallel tasks, to the allocated on-demand
virtual machines (VMs). They redistribute the tasks and their
states, which are key-value pairs of aggregated intermediate
results [7, 15, 16, 19, 36, 49]. However, migrating tasks and
their states incurs extra overheads (e.g., (de)serialization),
which increase proportionally to the state size (e.g., a large
number of key-value pairs), and can violate low latency SLOs.
Moreover, using VMs, which are popular on-demand cloud
resources, can further exacerbate latency spikes due to the
considerable launch delay of VM instances which can take

USENIX Association 2023 USENIX Annual Technical Conference 301

https://orcid.org/0000-0002-8530-2184
https://orcid.org/0000-0002-4372-6712
https://orcid.org/0000-0003-3478-2824
https://orcid.org/0000-0002-0748-6627
https://orcid.org/0000-0002-9863-7186

dozens of seconds (i.e., 25-30 secs) with conventional cloud
providers [21, 31, 44].

In this paper, we design Sponge, a new stream processing
system that requires low operational costs and keeps low
latency upon sudden bursty loads. Sponge is designed with
the following three design principles:
Combining two heterogeneous cloud resources to have
the best of both worlds: Sponge harnesses two heteroge-
neous cloud resources: VMs and serverless function (SF) in-
stances. Serverless solutions provided by conventional cloud
providers [11, 17, 26, 37, 56] only take hundreds of millisec-
onds (i.e., 300-750 ms) to launch and prepare and are de-
signed to achieve high scalability, while the operational costs
are much higher than those of VMs. Therefore, to achieve
low latency and low operational costs, Sponge uses VMs for
processing stable streaming loads for longer periods of time,
while quickly invoking SF instances and using them for short
periods of time to handle bursty loads. If the bursty input
loads persist, we may consider launching new VM instances
to permanently offload the tasks with existing state migration
techniques [16, 18, 19, 23, 25, 28, 36, 45, 49, 55]. In such cases,
on-demand SF instances can be used to accomplish system
SLOs by hiding the launch overhead during the preparation
of the new VM instances.
Keeping tasks with high migration overheads on VMs, while
quickly redirecting data to SFs: When VMs process stream-
ing data with stable loads over long periods of time, the states
of stream tasks are materialized, and the state size may in-
crease on the existing VMs. To avoid the state migration over-
heads from VMs to SFs, Sponge incorporates the redirect-
and-merge mechanism: Sponge immediately redirects the
increased load to SFs, which are imminent to offload, so that
each SF instance can build small partial states and periodi-
cally send them back to the VMs to merge with the original
states. This approach allows Sponge to promptly exploit fast-
launching SF instances and bypass the prohibition of direct
network communication between SF instances. For quick data
redirection, Sponge exploits SF properties to prevent cold start
latencies and pre-initiates copies of VM tasks on SFs to keep
its runtime, process, and pre-initiated tasks readily available
on time.
Fast reactive scaling: On top of the fast resource scaling
mechanisms on SF instances, Sponge identifies bottleneck
tasks reactively and makes precise decisions on which part of
the query to offload and how much of the compute resources
to request. At runtime, Sponge continuously monitors the
CPU usage, the major resource constraint of task execution,
to quickly react to the changing input loads. Our offloading
policy determines the fraction of input loads to offload based
on excess events accumulated in the input queue and accounts
for the optimal time to recover from load increases to meet
the SLOs for a given query.

Sponge is built atop Apache Nemo [51,57] with about 10K
lines of code. We evaluate Sponge on EC2 instances (5×

Fil-
ter

Src Sum Sink

State

K1

K2

(a) Streaming operators in a logical DAG

S1

S2

F1

F2

S3 F3

SM1

SM2

SK1

K1

K2

(b) Parallel tasks in a physical DAG

Shuffle

SK2

Figure 1: (a) Logical DAG of four operators including a state-
ful Sum operator with two key groups. (b) The corresponding
physical DAG with parallel tasks.

r5.xlarge) and AWS Lambda instances (up to 200 Lambda
instances of 1,769MB memory with one full CPU core) with
NEXMark [42], a popular benchmark for stream processing.
The effectiveness of our optimizations varies according to the
characteristics of queries (e.g., dataflow pattern, # of tasks,
and state size). Our evaluations show that Sponge exhibits
similar performance to costly over-provisioned approaches,
and reduces input event 99th-percentile tail latencies by 88%
on average compared to scaling queries on VMs and by 70%
compared to scaling on SFs without our techniques.

2 Background

In this section, we describe the resource demand characteris-
tics of stream processing and different on-demand resource
provisioning methods provided by current cloud services.

2.1 Stream Processing

Execution model. A stream processing query processes an
unbounded number of timestamped events to derive specific
results (e.g., top K, statistics) on every temporal window. The
execution of the query is generally expressed as a directed
acyclic graph (DAG) of operators and data dependencies. As
shown in Fig. 1, a vertex represents a stream operator that
transforms input events and emits output events, and an edge
represents how data flows between its adjacent operators. Pop-
ular stream engines like Flink [15], Spark Streaming [7], and
Beam [12] aid users with high-level languages (e.g., declar-
ative language) to facilitate query expressions. To provision
compute resources over stream operators in response to the
input data rate, the stream engine generates an optimized
physical DAG (Fig. 1(b)) after translating a user query into
a logical DAG (Fig. 1(a)). In a physical DAG, each logical
operator is expanded into n parallel tasks, p0, ..., pn−1, where
each task processes a disjoint data partition.
Streaming operators and resource demands. A stream op-
erator is either stateless or stateful. Stateless operators, such
as map and filter, are typically used to compute individ-
ual events or drop unnecessary events or fields by applying
predicates. Due to their simplicity, stateless operators can be
pipelined together within a single node to leverage data local-
ity and reduce network overheads. On the other hand, state-
ful operators, such as groupByKey and join, perform data

302 2023 USENIX Annual Technical Conference USENIX Association

(a) stateful join (b) stateless map

Figure 2: CPU and memory usage patterns for (a) stateful
windowed join and (b) stateless map operators upon process-
ing a fixed input rate of 80K events/s on identical 4 vCore
nodes. The CPU and memory usage of the stateful operator
increase until the window is full.

grouping within a window boundary to organize unbounded
streaming events into disjoint groups based on timestamps
and aggregation keys, requiring computationally extensive
key lookups. Thus, most streaming engines apply parallelism
specifically to stateful operators such that a single stateful task
pi processes events that only belong to a non-overlapping key
partition group Ki out of the entire key space K = ∪n−1

i=0 Ki.
Stateful operators are often the major source of system

bottlenecks [38, 50]. In particular, since each parallel stateful
task is assigned to a key partition group, it incurs shuffle com-
munication for the events in its key group that are collected
from the preceding (upstream) operators. Shuffle communi-
cation often requires the data to travel across different nodes,
requiring data serialization and deserialization on top of the
computation performed for the key lookups. As a result, as
shown in Fig. 2, it is prevalent to provision more CPUs to exe-
cute stateful operators rather than stateless operators [28, 54].

2.2 On-Demand Resource Provisioning
Several real-world stream analytics systems report high tem-
poral variability in the event count of data streams, even across
one-minute time windows [34, 36, 43, 48]. This means that
stream processing may need to frequently adjust resource pro-
visioning and query execution plans in response to changes
in input loads. Upon facing increased input loads, the system
needs to allocate more resources to avoid operators being
congested and maintain stable query latency.

Cloud providers offer primarily two options for on-demand
resource allocation: virtual machines (VM) and serverless
functions (SF). We compare three representative characteris-
tics between these two options in more detail.
Resource size. VMs are machine-isolated by bare-metal hy-
pervisors, whereas SFs are process-isolated by OSes. There-
fore, SFs are much more flexible in allocating resources.
Cloud providers typically provide VMs in chunks of a pre-
defined, fixed amount of resources (e.g., r5.xlarge with 4
vCores and 32GB memory). In contrast, SFs are allocated
based on a specified memory size. For the memory size, cloud
providers assign a certain number of CPU power (e.g., vCores)

A1

A2

A3

B1

B2

A4

B3

B4

K1

K2

K3

K4

A1

A2

A3

B1

B2

A4

B3

B4

K1

K2

K3

K4

A B
Shuffle

VM VM

VM VM

SF SF

SFSF

Scale

Out

a

b

Figure 3: While scaling out on SF instances, the system must
be aware that a⃝ task state migration overheads lead to latency
spikes, and b⃝ direct data communication among adjacent
tasks is prohibited between SF instances.

guided by their pricing model [8]. We observe that network
bandwidth per SF instance is about 100Mbps and concurrently
using multiple SFs can increase the bandwidth up to GBs of
effective bandwidth, which VMs already support, providing
enough capacities to handle most streaming workloads.
Start-up time. VM instances take a significant amount of
time to launch and to prepare the runtime stack for query
workload as they virtualize resources using bare-metal hyper-
visors. We observe that provisioning a new VM instance in
major cloud service providers, like AWS, Azure, and GCP,
mostly has a latency of over 25 seconds. On the contrary, SF
instances provided by these cloud vendors take only 300-750
ms to launch and be ready to run because SF instances share
runtimes and resources at the OS level.
Usage cost. SF instances are much more expensive to use
than VM instances, e.g., 4× more expensive when running a
1GB SF instance with AWS Lambda (with < 1 vCPU) com-
pared to a t2.micro EC2 instance, which is equipped with
1 vCPU and 1GB RAM. However, temporarily using SF in-
stances primarily for frequent short-lived bursty loads that con-
stitute only a small fraction of time throughout the day [26]
does not significantly increase the operational cost (§ 6.5).

3 Challenges

Based on these observations, we propose to use a combina-
tion of VMs and SFs to have the best of both worlds. To
achieve low latency and cost, we use cheap and stable VMs
for handling continuous loads for long periods of time, and
costly and reactive SFs for bursty loads during short periods of
time. In this section, we describe several challenges in scaling
streaming loads from VMs to on-demand SF instances.
C1. Migration with large operator states. For stream scal-
ing in the cloud, existing approaches trigger resource adap-
tation primarily by re-scaling operators (i.e., increasing or
decreasing parallelism) and migrating the bottlenecked tasks
to the instances with available resources (i.e., load redistri-
bution) [7, 15, 16, 19, 28, 36, 49]. Thus, even if we can set

USENIX Association 2023 USENIX Annual Technical Conference 303

Managed runtime init.Managed runtime init.

Figure 4: A comparison of the overheads of different steps of
workload scaling on stream processing systems in the cloud.
The VM, SF, and managed runtime initialization overheads
are averaged across all instances, and the data redirection and
task/state migration overheads are averaged across all single-
scaling operations for the 5× input load experiment in § 6.
Error bars indicate the 95% confidence interval.

up SF instances quickly, the task state migration overhead is
inevitable with existing systems, as shown by Fig. 3 a⃝, and
paradoxically often inflicts damage to system performance.

Fig. 4 illustrates the various overheads that occur during
a single workload scaling for the queries evaluated in § 6.
As shown in this figure, the task migration and reconfigu-
ration require a few extra seconds (3-4 seconds) to resume
the work after the migration. Also, the state migration takes
several seconds (e.g., from 4 to 17 seconds) depending on the
state size because of the (de)serialization overheads of states.
These task and state migration overheads lead to increased
query latency due to the delay in receiving events from up-
stream tasks. The system that aims to meet low-latency SLOs
must correctly and rapidly carry out task offloading to SFs.
In particular, some use cases are expected to generate out-
puts even in order of seconds or less, without query accuracy
loss [36, 48].

C2. Indirect data communication between SF instances.
As SFs are designed to be provisional and temporary, cloud
vendors usually prohibit running a server process that can ac-
cept inbound network connections on an SF instance. Hence,
direct data communication across SF instances is prohibited.
This prevents neighboring stream operators (parent and child
operators) from being offloaded to SFs simultaneously, as
these operators require direct shuffle data transfers to group
data by its key partitions, as shown in Fig. 3 b⃝.

Therefore, we can choose to migrate only certain tasks to
SFs (e.g., either operator A or B in Fig. 3), but this eventually
leads the bursty input load to end up on VMs on the adjacent
operators and fails to alleviate latencies. Alternatively, we can
offload all the tasks involved in the shuffle communication on
a large SF instance. However, this forces parallel tasks to be
located on a single SF instance, which can lead to network
pressure while leaving VMs idle. Consequently, it is essential
to design the system to be able to offload adjacent opera-
tors together to SFs while bypassing the prohibited direct
communication across SF instances.

C3. Quick decision making and scaling. With frequent un-
predictable changes in input events, offloading decisions must
be made quickly at runtime. Stream systems often detect
symptoms of bottlenecks from system metrics and decide
on whether and how much to scale. However, existing ap-
proaches can be too slow, as they require multiple iterations
of optimization that scale bottleneck operators one after an-
other [19]. Other work prevents such iterations by providing a
global optimum after collecting all metrics from all executors
to redistribute tasks [28]. While these approaches effectively
find the target throughput and may be suitable for throughput-
oriented workloads, they only work in intervals of multiple
10s of seconds and may not be suitable for latency-oriented
workloads. For a stream system operating with diverse inter-
vals and window sizes, it is important to have a uniformly fast
and effective optimization level to prevent window outputs
from being delivered too late.

4 Sponge Design

In this section, we describe the key pillars of our system de-
sign and explain the details by illustrating our graph rewriting
algorithm, dynamic offloading policy, and the mechanisms
that prevent cold start latencies and enable system correctness.

4.1 Design Overview
Latency spikes occur when the input rate ri exceeds the max-
imum throughput mi on a particular task pi. When this hap-
pens, data starts to accumulate on the event queue, along with
the operator state in memory, leading to high CPU usage
and memory pressure. In a cloud environment, the maximum
throughput mi often depends on the CPU capacity allocated
to the task, regardless of the operator type. This is because
most cloud providers are equipped with GBs of network band-
widths, and memory pressure starts to increase when the CPU
becomes saturated, and the input data builds up in the event
queue with ri > mi. Therefore, our goal is to primarily fo-
cus on relieving CPU pressure. To achieve this, we design
a system that accurately estimates the amount of additional
resources needed and provides fast mechanisms for offload-
ing CPU computation from VMs to SFs through two design
principles: redirect-and-merge and fast reactive scaling.
Redirect-and-merge. Sponge is designed to rapidly forward
increased input load to available resources in SF instances. To
ensure speed, we bypass expensive query optimizations dur-
ing runtime by performing DAG optimizations during com-
pile time, i.e., when the application is launched (Fig. 5 a⃝).
During compile time, there are no concerns yet about runtime
synchronization and progress, so it only takes about 200ms
upon workload initialization to perform the DAG optimiza-
tions. After the optimization, Sponge scheduler places tasks
on appropriate executors (Fig. 5 b⃝). This allows Sponge to
focus on which operators and how much of their data volume

304 2023 USENIX Annual Technical Conference USENIX Association

Sponge Runtime

Query
Sponge Compiler

DAG Optimizer

SF

RO
MOTO

Scheduler

VM

Monitoring

VMVM

Tasks

Event
queue

a

c

f

b

e

d

Figure 5: Sponge architecture.

to offload to SFs based on monitoring CPU usage (Fig. 5 c⃝)
without having to relaunch queries at runtime.

While stateful operators are our primary focus as initial bot-
tlenecks, any operator can become a subsequent bottleneck.
Thus, we enable offloading for any operator, regardless of its
type and statefulness. We design transient operators (TOs) so
that operator logic can be prepared on SF instances to receive
events immediately after detecting an increase in the input
load and CPU usage on VMs (Fig. 5 d⃝). We also enable of-
floading to be activated at any time with high efficiency and
responsiveness. To meet these requirements, we introduce a
set of new proxy operators: router operators (ROs) and merge
operators (MOs). ROs supervise the data communication to
downstream VM and SF instances, in order to enable the sys-
tem to rapidly and elastically forward data from any existing
operators to the designated instances (Fig. 5 e⃝). To minimize
state migration overhead, which is a major bottleneck in task
migration [18, 23, 25, 55], the states, exclusively for the of-
floaded input load, are maintained separately on SFs. MOs
enable the system to later merge the corresponding states of
offloaded workload created on SFs with the states on the orig-
inal VMs for any stateful operators (Fig. 5 f⃝). This way, the
offloading overhead for both stateful and stateless operators
is substantially reduced, as we only have to offload the com-
putational logic, and not the states. The proxy operators are
inactive during non-scaling periods to avoid extra costs and
are only activated when needed.

Fast reactive scaling. With the principle above, we provide a
fast reactive approach that prevents inaccurate predictions on
resource provisioning by monitoring local performance met-
rics within the executors. Bottlenecks often occur individually
on VMs, so it is sufficient to mitigate them locally within each
VM. As briefly mentioned, relieving CPU pressure when the
input rate ri is greater than the operator throughput mi is key
to reducing CPU and memory strain in stream processing
systems. Sponge has low monitoring overhead, with less than
10ms per observation. Based on input rate and CPU usage
observations, Sponge estimates the amount of CPU resources
needed to increase operator throughput and meet our SLOs
under increased input loads.

Algorithm 1: DAG rewriting for operator insertion.

1 Function OperatorInsertion(dag)
2 for vertex, inedges in dag.topological_sort() do
3 t_op = TransientOp.for(vertex)
4 for inedge in inedges do
5 if inedge.comm != 1to1 then
6 r_op = RouterOp.create()
7 dag.remove_edge(inedge)
8 e1 = {inedge.src→r_op, inedge.comm}
9 e2 = {r_op→vertex, 1to1}

// connect transient operators
10 e3 = {inedge.src.t_op→r_op, inedge.comm}
11 e4 = {r_op→vertex.t_op, 1to1}
12 dag.add_edges([e1, e2, e3, e4])

13 else
14 e = {inedge.src.t_op→t_op, 1to1}
15 dag.add_edges([e])

16 if inedge.src.is_stateful() then
17 m_op = MergeOp.create()
18 dag.remove_edge(inedge)
19 e1 = {inedge.src→m_op, inedge.comm}
20 e2 = {m_op→vertex, 1to1}
21 e3 =

{inedge.src.t_op→m_op,inedge.comm}
22 e4 = {m_op→vertex, 1to1}
23 dag.add_edges([e1, e2, e3, e4])

24 return dag

TOfltr

TOsum

Filter Sum

State

K1

K2

Shuffle

Filter ROsum

Shuffle Sum

MOsum

State

K1

K2
a

a

b

c

Figure 6: DAG transformation after graph rewriting.

4.2 Compile-time Graph Rewriting Algorithm

At the start of the application, our compiler applies the graph
rewriting algorithm (Algorithm 1) to the application DAG,
which produces a new DAG based on a set of conditional
rules, as shown in Fig. 6. In our algorithm, TOs, ROs, and
MOs are inserted as follows. TOs are cloned stream oper-
ators with additional features to run on SF instances, such
as maintaining partial states for stateful operators. Since all
original operators are potential candidates for offloading, we
first create TOs for all operators (line 3, Fig. 6 a⃝). This way,
all operators causing CPU bottlenecks can scale on SFs with
TOs. ROs enable data communications between VM and SF
instances when the communication pattern involves a shuffle
or a broadcast (as one-to-one communications typically occur
locally between pipelined operators) (§ 2). ROs run on exist-
ing VMs to redirect the input data to the downstream tasks
running on either VMs or SFs without performing additional

USENIX Association 2023 USENIX Annual Technical Conference 305

computations (line 5-12, Fig. 6 b⃝). If the communication pat-
tern involves the same number of partitions and tasks between
two operators, we pipeline the corresponding TOs with a one-
to-one edge (line 13-15). ROs incur almost no costs as they
simply redirect events to the tasks on target instances (e.g.,
conventional or TO tasks). Lastly, we insert an MO after each
stateful operator for every edge, so that the partially aggre-
gated states on the TOs can be merged back into the original
states on VMs (line 16-23, Fig. 6 c⃝), where the details of
the merging mechanisms are provided in § 4.5. Stateless op-
erators do not need to merge states, so they simply pass on
their output to the following operators (e.g., filter operator in
Fig. 6). During non-scaling periods, ROs are not activated
and TOs and MOs do not receive any data, adding no compu-
tational costs to the runtime. The operators are only activated
upon offloading actions.

4.3 Dynamic Offloading Policy
In this section, we describe when Sponge triggers offloading,
how many SF instances it uses, and how many events it of-
floads. Our goal is to constantly maintain low query latencies
while keeping CPU utilization stable across all active cloud
instances. To achieve this, Sponge quickly calculates the total
number of CPU cores needed to meet this goal and the Sponge
scheduler redistributes the workload accordingly among the
tasks placed on VMs and SFs.
Overall workflow. The Sponge runtime, shown in Fig. 5,
is a main system component that performs monitoring of
the resources and operator states to take immediate scaling
actions as needed. Each executor continuously monitors CPU
resources and input rates, typically every second, and observes
if the CPU load falls outside a stable range for consecutive
periods. If so, the Sponge runtime initiates the scaling phase
by first calculating the target system throughput, based on the
over-subscription period of CPUs and the current input rates
(that jointly decide the number of events in the queue), and the
recovery deadline (the time remaining to clear the events and
return the system to a stable state). Subsequently, the Sponge
runtime adds new SF instances as needed to meet the recovery
deadline by sending requests to the Sponge scheduler. The
number of new SF instances is chosen to be minimum to
neither over-subscribe nor under-subscribe the active cloud
instances, minimizing operational costs. After a scaling action
is taken, the Sponge runtime returns to the monitoring phase.
It is possible that the Sponge runtime may go through multiple
monitoring-scaling phases before the system becomes stable.

4.3.1 Detailed Offloading Process

CPU utilization goals. Along with system metrics, such as
the input rate and operator latency, Sponge measures the CPU
load of the executor in order to maintain adequate CPU loads
on individual nodes. Through extensive experiments, we have

observed that the input rate ri exceeds operator throughput mi
and event queues start to build up (i.e., ri > mi) when the CPU
is occupied at around 75-80% of its capacity. We have also
seen symptoms of over-provisioned system resources when
the CPU load falls under 50-60%. Due to such reasons, we
aim to maintain the CPU utilization range between 60-80%.
Events in the queue. Assuming ri(t)> mi(t) between times
tp and tp+1 (tp < tp+1), the number of excess events accumu-
lated in the queue can be formulated as

∫ tp+1
tp (ri(t)−mi(t))dt.

Obviously, the accumulated events in the queue will be
smaller if the duration d = tp+1 − tp is smaller. This is the
main reason for using SF instances over VMs – to reduce the
duration of ri(t)> mi(t).
Recovery deadline. Recovering from this event backpressure
is achieved by providing the system with additional resources
to achieve higher throughput, mio . If additional resources are
available from time to, we should set a deadline to+1 until
which we aim to empty the queue to return to a stable state for
our streaming system. We base the deadline on the window in-
terval of the query (e.g., 10 seconds) so that we can deliver the
query results within the query’s next output boundary. Then,
the number of additional events that can be processed from
the queue can be expressed as

∫ to+1
to (mio − ri(t))dt, where the

increased throughput is larger than the input rate (mio > ri(t)).
As a result, we should adjust our throughput mio with suffi-
cient additional resources to meet our recovery deadline to+1
(e.g., to+1 − to ≤ 10) such that the following equation holds:∫ tp+1

tp

(ri(t)−mi(t))dt ≤
∫ to+1

to
(mio − ri(t))dt (1)

The approximation of the integrals is based on Simpson’s
rule provided by [5], which turns complex calculations into
simple arithmetic that incurs trivial overheads.
Stable throughput per VM CPU core. To calculate the
target number of SF instances required to achieve our tar-
get throughput, we maintain records of the CPU usage rate
of the VM node during stable loads. Assuming that a task
pi runs on a single VM core with an average usage rate of
ucpuV M

i
(%) and an average task input rate of ri[events/sec]

based on the records, we scale and approximate the input
rate and throughput for 100% utilization of the VM core
rpcV M

i [events/(sec · core)] for task pi, as follows:

rpcV M
i =

ri
ucpuV M

i
100

[events/(sec · core)] (2)

Required number of SF instances and data redistribution.
Based on the approximation of how much input throughput a
VM core can handle, we can calculate the number of required
SF instances to achieve our target throughput mio with a sim-
ple division. We offload tasks from VMs to SFs to keep the
CPU utilization of VM clusters between 60−80% in order to
prevent resource over-provisioning. Hence, we target the VM
CPU core usages at 70%, for our approximation to solidly fall

306 2023 USENIX Annual Technical Conference USENIX Association

into our target with a ±10% buffer even when our profiling
measurements exhibit minor errors on time-varying variables
like ri(t).

Assuming the CPU capacity of each SF instance core is
different from that of a VM core, we can derive a relation
between them with profiling: capaSF

core = ρ ∗ capaV M
core. Cor-

respondingly, rpcSF
i = ρ∗ rpcV M

i because the throughput is
proportional to the CPU capacity. Altogether, the number of
total SF cores c that we need to prepare to meet our latency
goal for task pi can be derived with Equation 2 as follows:

c = ⌈ mio

0.7 · rpcSF
i

⌉= ⌈
mio ·ucpus

0.7 ·100 ·ρ · ri
⌉ (3)

where the number of required SF instance cores increases
as ρ decreases. Finally, the number of SF instances can be
calculated with c

k where k is the number of cores per SF
instance (k = 1 in our evaluation).

When offloading stateless or stateful tasks, Sponge evenly
redirects data or redistributes keys to the c

k SF instances, while
processing remaining events on VMs to keep 70% CPU usage
in average. If the event distribution is skewed across the key
space, the solution can be extended to use key histograms for
more accurate key partitioning, as in existing approaches [13,
30]. Both during scaling up and down, the target CPU usage
is set at 70% within our target range.

4.4 Reducing Cold Start Latency
In order to timely gain access to SFs, Sponge provides two
options: (1) warm-up SF workers in advance by sporadically
processing short events [21, 39, 58] to minimize the managed
runtime initialization overheads [35], and (2) use solutions
like AWS SnapStart [32], which bring shorter initialization
times of SFs by taking a snapshot of the initialized SF instance
environment and caching it for low-latency access [1]. As SFs
are charged based on the memory usage time and the number
of requests [9, 10, 22], prices for pre-warming SFs are trivial
(nearly zero). By default, Sponge prepares and keeps enough
SFs warm to handle up to 5× the stable load during the work-
load. For bursty loads that exceed 5× the stable load, Sponge
timely prepares new instances with SnapStart [32] on AWS.
SFs on AWS SnapStart [1, 32] show a slightly worse start-up
time compared to the instances that are kept warm in advance,
but the overhead is reduced by more than 80% compared to
unoptimized JVM initializations, resulting in a sub-second to-
tal start-up time for SFs (§ 6.4). As a result, by enabling both
methods for initializing the managed runtime, Sponge can
timely gain access to SFs upon facing unpredictable bursty
input loads.

4.5 Correctness
As stream systems are designed to be long-running, progress
is tracked by the positions of the watermarks that flow along

T1

T2
K2-2

T1

T2

R1

R2

A1

A2

K1

K2

2

13

M

R1

R2

A1

A2

K1

K2-1
7

4

M2
K2

M1
K1

Policy

2

3
M

9

6

M5

Figure 7: Once an operator (A2) tries to scale, an offload mes-
sage (M) is generated at the RO (R2) to activate its TO (T2)
and MO (M2). The offload message acts as a boundary among
input events (1-9) for operator scaling and state merging.

with stream events [12, 15, 51, 57]. Based on the intuition,
Sponge maintains correctness by (1) introducing a watermark
in the event stream as a control message upon (de)activating
an operator and (2) ensuring that all events between two wa-
termarks are processed in the original system (i.e., without
offloading) or on the offloaded operators [23, 36].

Concretely, upon detecting a possible bottleneck in an oper-
ator task pi on an executor, Sponge fires a watermark message
M into the data channel (Fig. 7). Upon receiving watermark
messages, operators checkpoint their states to later recover
from the checkpointed states, guaranteeing exactly-once pro-
cessing. Sponge scales after temporarily pausing operators
upon control messages and delivering messages to down-
stream tasks. Once all on-the-fly events in the data plane are
consumed, downstream tasks send acks back to the upstream
tasks to guarantee no event and state loss.

Thus, the events that arrive after M are immediately redi-
rected to the tasks of the TOs on SFs, where partial states
are aggregated if the operator is stateful. For stateful opera-
tors, TOs send the aggregated states to the following MOs
placed on VMs, which know where to start merging the partial
states with the original ones. Both incremental and appended
aggregation can be mergeable with partial states, similar to
how Flink [15] manages shared states, which causes mod-
erate overhead on VMs. Even if events arrive out-of-order
in the merge operators, they wait for the same watermark to
arrive from the task in VM and its transient tasks so that the
states can be synchronized. This ensures that all input data
before and after M are processed according to the proposed
optimizations.

5 Implementation

We have implemented Sponge with about 10K lines of Java
with support for AWS Lambda, as follows:
Programming interface: To express a stream query as an
application DAG, we use Apache Beam [12] application se-
mantics, which is a widely used dataflow programming inter-
face for various systems (e.g., Spark [7], Flink [15], Cloud-
Dataflow [3]). In addition, as Beam provides APIs for devel-
opers to build associative and commutative operations (e.g.,

USENIX Association 2023 USENIX Annual Technical Conference 307

MSrc F

: one-to-one

Q1

Q4, 5

M1Src F M2
GB
K1

M3… …

: shuffle

GB
K2

M4… GB
K3

M4…

: round robin

M1Src F M2
GB
K1

M3… … GB
K2

M4…

Q6

M1Src F M2
GB
K1

M3… … GB
K2

M4…

Q7

Q8

M1Src F M2
GB
K

… M3…

: Stage boundaries

SI M5…

: Stateful ops

Figure 8: A simplified application DAG of stream queries
used in our evaluation. M and F are map and filter operators,
GbK is a stateful group-by-key operator for incremental ag-
gregation on windows, and SI is a non-mergeable stateful
operator for the join operation.

combiners), Sponge can extract this information to build the
merge operators.
Compiler: Apache Nemo [51, 57] provides the intermedi-
ate representation and optimization pass abstractions, with
which we can flexibly optimize application DAGs. We split
our operator insertion into three separate optimization passes
for inserting ROs, TOs, and MOs on Nemo to reshape the
application DAG, defined by Apache Beam semantics.
Runtime: We modify the Nemo runtime [51, 57] to support
the migration of tasks and the redirection of the data from
VMs to SFs. Sponge executes worker processes on VM and
SF instances, which each manages a thread pool that contains
a fixed number of threads and assigns tasks to the threads.
VM workers set up Netty [41] network channels and com-
municate with other VMs and SF workers, while there are
no network channels set up between SF instances due to the
communication constraint. For launching new VM and SF
instances, as well as for deploying the worker code on AWS
Lambda, we use boto3, the AWS SDK API for controlling
AWS instances [14].

6 Evaluation
In our evaluation, we observe Sponge performance compared
to other scaling mechanisms (§ 6.2), distinguish the factors
that contribute to the Sponge performance (§ 6.3), compare
the cold start latency reduction mechanisms (§ 6.4), and ob-
serve the latency-cost trade-off between SFs and VMs (§ 6.5).

6.1 Methodology
Environment. We use AWS EC2 r5.xlarge instances (32GB
of memory and 4 vCores) as VM workers, and AWS Lambda
instances as SF workers. As AWS Lambda offers one vCPU
per 1,769MB and provides constant network bandwidth (i.e.,
∼ 100Mbps) regardless of the instance size, we use single-
core SF instances of 1,769MB to provision each instance
with enough network bandwidth to achieve the throughput
of the CPU core. VMs generally provide 10Gbps networks,
which effortlessly cover the traffic generated by the CPU

Query Stateful State
Size

of Tasks
(per Op.)

Stable in-
put rate

Q1 X - 120 550 K/s
Q4 O ∼90 MB 60 190 K/s
Q5 O ∼2.4 GB 70 19 K/s
Q6 O ∼73 MB 70 230 K/s
Q7 O ∼1.5 GB 90 15 K/s
Q8 O ∼7 GB 60 60 K/s

Table 1: Characteristics of different NEXMark stream queries.

300 320 340 360 380 400 420 440 460
Elapsed time (s)

100K
150K
200K
250K
300K

In
pu

t r
at
e

 (e
ve

nt
s/
se

c)

(a) Bursty
(b) Sine
(c) Gradual

Figure 9: Examples of different bursty input patterns used in
some experiments, where input rates increase at time t = 380.
(a) shows a sudden increase from 60K to 300K (5×) for 60
seconds, (b) shows a sine-curve increase and decrease, and
(c) shows a gradual increase.

core throughput (i.e., < 10% bandwidth utilization when of-
floading 450K events/sec). We set up Amazon Virtual Private
Cloud (VPC) for the data communication between the VM
and SF instances for stable network connections.
Workloads. NEXMark [42] is a widely used streaming bench-
mark [28, 33] that analyzes auctions and bid data streams.
NEXMark contains diverse stream queries with complex
dataflow and stateful operations. Among the 8 (Q1-8) NEX-
Mark queries, we choose 6 queries as shown in Table 1
because they represent distinctive data communication pat-
terns and stateless and stateful operations. We omit Q2-3
because Q2 is a stateless query similar to Q1, and Q3 is a
non-associative stateful query like Q7.

Fig. 8 illustrates the simplified original DAG of NEXMark
queries, and Table 1 summaries the characteristics of the
queries. The queries except for Q1 contain windowed op-
erations. We configure the window size of queries as 60 sec-
onds and the window interval as 1 second. While the system
throughput declines with larger and more frequent windows,
we evaluate under a frequent window interval to test Sponge
under requirements for frequent, time-critical resource scal-
ing. The throughput of the evaluated engine [51,57] is similar
to the performance of other stream processing engines [7, 15]
when the same window size and interval are used. Nonethe-
less, in our evaluation, the bursty traffic is increased by up to
10× events/sec and represents a wide range of realistic input
rates in the field (§ 6.2).
Baseline. We compare Sponge with the following baselines:
• NoScaling executes stream queries on static VMs without
scaling out stream queries.

• VMBase dynamically creates new VMs and migrates tasks

308 2023 USENIX Annual Technical Conference USENIX Association

350 375 400 425 450
Elapsed time (sec)

Q1

0
10
20
30
40

La
te
nc
y
(s
)

NoScaling VMBase SFBase VMInit Over Sponge

350 375 400 425 450
Elapsed time (sec)

Q4

0
10
20
30
40

350 375 400 425 450
Elapsed time (sec)

Q5

0
10
20
30
40

La
te
nc
y
(s
)

350 375 400 425 450
Elapsed time (sec)

Q6

0
10
20
30
40

350 375 400 425 450
Elapsed time (sec)

Q7

0
10
20
30
40

La
te
nc
y
(s
)

350 375 400 425 450
Elapsed time (sec)

Q8

0
10
20
30
40

Figure 10: The tail latency graph, under a bursty load
(Fig. 9(a)) at t = 380s and scaling is triggered at t = 381s.

to the new VMs for scaling without dataflow reshaping.

• SFBase dynamically creates SF instances and migrates
tasks to SFs for scaling without dataflow reshaping. For SF-
Base and Sponge, we prevent cold start latencies on SF work-
ers as described in § 4.4.

• VMInit initializes new VMs in advance and migrates tasks
to the new VMs for scaling without dataflow reshaping.

• Over over-provisions VMs and already has enough re-
sources to cover input loads without dataflow reshaping.

Bursty traffic and resource allocation. We emulate bursty
traffic by increasing the input rate over a short period of time,
as shown in Fig. 9. In this traffic pattern, we first generate
stable input streams where the input rate is stable and does not
fluctuate. At a specific point (e.g., t = 380s in our evaluation),
we increase the input rate for a short period of time (e.g., 60
seconds) to emulate an increased load and then decrease the
rate back to the stable input rate. In § 6.2, we observe the av-
erage performance of the different systems under up to 10×
burstiness (bursty input rate

stable input rate), and we provide detailed analysis on
the effects of the burstiness rising from 3× to 6× in § 6.3. By
default, the burstiness is set to 5×, as it distinctly shows the
limitations of existing approaches comparatively. For exam-
ple, as the stable CPU load is kept at 60−80%, most baselines
already experience high latencies from 2× burstiness, but the
performance results are more clearly distinguishable between
the baselines under the 5× burstiness.

During the stable load, we run 5 VM workers. We gen-
erate events (per second) for the stable load such that all 5

350 375 400 425 450
Elapsed time (sec)

Q1

0
20
40
60
80

100

CP
U

Ut
iliz

at
io

n
(%

)

NoScaling VMBase SFBase VMInit Over Sponge

350 375 400 425 450
Elapsed time (sec)

Q4

0
20
40
60
80

100

350 375 400 425 450
Elapsed time (sec)

Q5

0
20
40
60
80

100

CP
U

Ut
iliz

at
io

n
(%

)

350 375 400 425 450
Elapsed time (sec)

Q6

0
20
40
60
80

100

350 375 400 425 450
Elapsed time (sec)

Q7

0
20
40
60
80

100

CP
U

Ut
iliz

at
io

n
(%

)

350 375 400 425 450
Elapsed time (sec)

Q8

0
20
40
60
80

100

Figure 11: The CPU utilization graph, under a bursty load
(Fig. 9(a)) at t = 380s and scaling at t = 381s.

VM workers undergo CPU usage between 60% and 80%,
preventing the VM cluster from being under-loaded or over-
loaded. As queries have different computational complexity,
the stable input rate is configured differently for each query as
shown in the last column of Table 1. Once bursty loads occur,
we dynamically allocate up to 200 single-core SF instances
for Sponge and SFBase, and up to 50(10×) new extra VM
instances for VMBase depending on the query load.

6.2 Performance Analysis
Fig. 10 and Fig. 11 illustrate the 99th-percentile tail latency
and CPU utilization, respectively, of the different systems
across different queries for the Burst traffic pattern in Fig. 9.
Overall, Sponge and Over exhibit lower latencies compared to
others during bursty periods and successfully keep the CPU
utilization stable. The latency of NoScaling continuously in-
creases with full CPU utilization as the existing VMs are
overloaded and never perform offloading. Henceforth, we dis-
cuss Sponge and other baselines that perform scaling. For
SF-based strategies that are restricted by the prohibited di-
rect communication between SF instances, we profile their
operator costs and manually configure them to make the best
scaling decisions.
Sponge. Sponge reduces the tail latency on average by 88%
compared to VMBase and 70% compared to SFBase and
performs comparably to Over. Sponge also keeps the CPU
utilization relatively stable across time, as shown in Fig. 11.
Subsequently, we illustrate below why other scaling strategies
cannot deliver the same benefits as Sponge in further detail.

USENIX Association 2023 USENIX Annual Technical Conference 309

Traffic pattern Burstiness Duration

Figure 12: Summarized results of the experiments, with sim-
ilar settings as in Fig. 10, displaying the average peak tail
latency across the different NEXMark queries under diverse
input patterns and burstiness.

VMBase. The latency of VMBase in Fig. 10 increases by at
least 30s due to the slow start-up time of the VMs. Specifically,
we observe that it takes around 25-30 seconds for the VMs to
start, and around 4 extra seconds for managed runtime (i.e.,
JVM) worker processes to start on the newly started VMs.
Moreover, as JVM processes are cold at the beginning and
JIT compilation is not triggered, the processing throughput
is low in the beginning, which causes extra latency of up
to 44 seconds. After new VMs are instantiated, tasks are
migrated to new VMs, and the latency of the VM decreases as
the throughput eventually becomes larger than the input rate.
Nevertheless, the CPU utilization of VMBase shown in Fig. 11
is continually kept high after the peak load, as it tries to climb
down from the latency peak by heavily processing the data in
the event queue.
SFBase. The slow start-up time of VMs can be mitigated
by using SFs as shown in SFBase. Upon scaling out Q1 (a
simple stateless query), SFBase significantly reduces the la-
tency and CPU compared to VMBase, as the start-up time of
an SF instance only takes a few hundred milliseconds in our
evaluation. This result suggests that only by using SFs instead
of VMs, we can significantly improve the latency for scaling
out a simple stateless query, similar to MArk which handles
bursty loads of stateless inference jobs [58].

However, for scaling out other complex queries with N-to-
N shuffle data communications and stateful operations, the
performance gain of SFBase compared to VMBase declines.
It indicates that naïvely scaling queries on SFs without any
operator insertion has limitations due to the challenges ex-
plained in § 3. In Q4 and Q6, latency increases by up to 12
seconds because the operators with shuffle edges cannot be
redistributed to SFs and VMs become the bottleneck. In Q5,
Q7, and Q8, latency and CPU spikes are caused by task and
state migration overheads.
VMInit. Like SFBase, VMInit reduces the slow start-up time
of VMs by starting them in advance. For VMInit, queries with
N-to-N shuffle data communications can be offloaded, but we
can see that it still incurs task and state migration overheads
resulting in short steep peaks of tail latencies and CPU usage,
which is highlighted in Q8.

300 350 400 450
Elapsed time (sec)

Q4

0

2

4

6

8

La
te
nc

y
(s
)

SFBase SpongeRO SpongeTO SpongeSnap Sponge

300 350 400 450
Elapsed time (sec)

Q5

0

5

10

15

300 350 400 450
Elapsed time (sec)

Q6

0

3

6

9

12

La
te
nc

y
(s
)

300 350 400 450
Elapsed time (sec)

Q8

0

8

16

24

32

Figure 13: The latency graphs for SF, SpongeRO, SpongeTO,
SpongeSnap, and Sponge to analyze and break down the per-
formance improvements of Sponge.

Over. The over-provisioned case is the most expensive solu-
tion, providing enough resources for the peak loads without
considering an upper bound for runtime costs. In Fig. 10, we
can see a slight increase in latency as the input load increases,
but it soon stabilizes back. The CPU usage in Fig. 11 dis-
plays an under-utilization before the peak load, but shows an
adequate utilization rate afterward, as it is allocated with an
adequate amount of resources for the peak load.
Input patterns. In Fig. 12, we can see the average tail latency
among the different queries along the different input patterns.
We can see that Sponge and Over show good performance
among all settings, and NoScaling continuous increases in
most cases. The sine and gradual bursts show a relatively mild
effect compared to others, as their bursts are more gentle. We
can see that while 120s and 30s bursts show somewhat similar
results, 7× and 10× bursts show higher tail latencies due to
the increased load.

6.3 Graph Rewriting Effect
To validate our design, we analyze the performance gain on
Sponge with the following additional baselines:
• SpongeRO scales queries on SFs while allowing direct
communication between SF instances with ROs only.

• SpongeTO scales queries on SFs by adding event redirec-
tion atop SpongeRO with ROs and TOs.

• SpongeSnap shows performance for Sponge, with ROs,
TOs, and MOs, on SnapStart, without pre-warming instances.

Fig. 13 illustrates the tail latencies of SFBase, SpongeRO,
SpongeTO, SpongeSnap, and Sponge in more detail. Q1 and
Q7 are omitted in the figure, as Q1 is a simple stateless query,
and Q7 is represented by Q5 and Q8.
Router operator effect. Comparing SpongeRO with SFBase
shows the effect of router operators. In Q4 and Q6, SFs exhibit
higher latencies as VMs are bottlenecked while processing

310 2023 USENIX Annual Technical Conference USENIX Association

x3
(570K/s)

x4
(760K/s)

x5
(950K/s)

x6
(1140K/s)

Burstiness
(a) Comparing SFBase & SpongeRO

0

5

10

15

La
te
nc
y
(s
)

Q4

SFBase
SpongeRO

50 70
Degree of Parallelism

(b) Comparing SpongeRO & SpongeTO

0

2

4

6

8

Ta
il
la
te
nc
y
(s
)

Q4

SpongeRO
SpongeTO

Figure 14: Comparison on Q4 for (a) SFBase and SpongeRO
on diverse burstiness, and (b) SpongeRO and SpongeTO on
different degrees of parallelism (# of parallel tasks).

events for M operators (Fig. 8) on VMs (only 3% of input
events are filtered before M2). As naive SFs can only offload
one of M and GbK, we choose to offload GbK, as the amount
of computation on M is smaller than that of GbK due to the
additional aggregation. However, the input rate of M on VMs
becomes higher than the maximum throughput on the VMs
with 5× bursts in Q4 and Q6, and events pile up in M operators,
incurring latency increases in SFs. In Q5 and Q8, the latency
of SFBase is similar to SpongeRO as VMs sufficiently handle
the load on M operators. The main bottlenecks in Q5 and Q8
are GbK operators, which incur large aggregate computations.
This result indicates that the RO is effective when the input
rate and the overhead caused by the operators running on
VMs are high.

We also evaluate when VMs become bottlenecks on M op-
erators, by varying the burstiness (bursty input rate

stable input rate from 3 to 6 in
Q4 (Fig. 14(a)). In the figure, the bottom and top of the box
are the 25th and 75th percentiles, the line indicates the me-
dian, error bars are the 95% confidence interval, and outliers
are dotted as rhombi. VMs sufficiently handle 3× and 4×
burstiness, and the latency of SFBase does not increase and is
similar to SpongeRO. However, when the burstiness increases
to 6×, VMs become the bottleneck in processing the input
events of M. Unlike SFBase, SpongeRO adds an RO between
M and GbK, and migrates both M and GbK to SFs while keeping
the RO on VMs. As an RO does not (de)serialize events and
does not perform computation, the amount of computation of
RO is always smaller than that of M, and reduces latencies by
up to 70%.

Transient operator effect. Transient operators enable Spon-
ge to redirect data without stopping the workload for
rescheduling. The effectiveness of transient operators in-
creases as the number of tasks to be migrated (or redirected)
increases. Q4 requires a large number of tasks to be migrated
or redirected. For Q4, we had to migrate or redirect 85%
of total tasks to SFs to mitigate the bottleneck in the VMs
in SpongeRO and SpongeTO. SpongeRO takes around 2.8
seconds for migrating its tasks. In contrast, SpongeTO takes
around 1.4 seconds for redirecting its tasks. Due to the fast
redirection mechanism, SpongeTO additionally reduces the
latency by up to 28% compared to SpongeRO.

Q1 Q4 Q5 Q6 Q7 Q8
Query
(a)

0

5

10

La
te
nc

y
(s
)

20-VMs (static)
25-VMs (static)
Sponge (5-VMs)

1 5 10 15 20 25
% of bursty duration

in a day
(b)

50

100

150

C
os

t (
$)

20-VMs (static)
25-VMs (static)
Sponge

Figure 15: (a) The latency during a bursty period, and (b) a
rough calculation of the cost according to the % of the bursty
duration throughout the day.

When the degree of parallelism increases, the number of
tasks to be migrated or redirected also increases. Fig. 14(b)
illustrates the tail latency under different degrees of paral-
lelism in Q4. With 50 parallel tasks for each operator, the task
migration/redirection overhead is small, but the latency in-
creases after the migration and redirection in both SpongeRO
and SpongeTO, as a smaller degree of parallelism makes the
system more prone to unevenly skewed tasks. With 70 parallel
tasks, the overall latency decreases but the task migration over-
head increases in SpongeRO. As a result, the peak latency in-
creases by up to 8 seconds. In contrast, due to the lightweight
redirection optimization, the peak latency of SpongeTO is kept
at around 3.5 seconds, which is 56% smaller than SpongeRO.
Merge operator effect. Even with ROs and TOs, SpongeTO
still suffers from high latencies in Q5 and Q8 due to the state
encoding/decoding overheads. The state migration overhead
is trivial in Q4 and Q6 (< 100MB), but the overhead increases
with the state size. The time to encode/decode the states of
Q5 and Q8 takes around 13s (for ∼2.4GB state) and 35s
(for ∼ 7 GB state), respectively. As a result, the latency of
SpongeTO increases by up to 15 and 38 seconds in Q5 and
Q8. In contrast, Sponge significantly reduces the latencies
to 4 seconds in Q5, and to 6 seconds in Q8, preventing state
migration overheads with MOs.

6.4 Cold Start Latency Reduction Methods
In § 4.4, we describe two methods for reducing the cold start
latency: by keeping warm SF instances and by using snap-
shots of SFs through tools like SnapStart [32]. In Fig. 13, we
can see that the performance of SpongeSnap, which solely
bases its initialization method on SnapStart [32], is slightly
worse, but comparable with Sponge, which uses a hybrid of
both methods in optimizing the managed runtime (e.g., JVM)
initialization overhead. Since the overhead is reduced by more
than 80% with SnapStart [32], and > 90% with warm SF in-
stances compared to the original managed runtime initializa-
tion methods on SF instances, both methods succeed to timely
supply SFs within a sub-second total start-up time.

6.5 Latency-Cost Trade-Off
The cost of using SF instances may be higher than over-
provisioning VMs when the bursty input persists. In such
cases, it makes more sense to launch new VMs while Sponge

USENIX Association 2023 USENIX Annual Technical Conference 311

handles the bursty traffic and offload our tasks to the VM. To
investigate the latency-cost trade-off and figure out when it is
more beneficial to launch new VMs, we compare the follow-
ing two VM over-provisioning approaches with Sponge in
terms of latency and cost on the workload shown in Fig. 9(a).
One is 20-VMs (static), where 20 VMs are statically allocated
without dynamic scaling, and the other is 25-VMs (static),
where 25 VMs are statically allocated. As the default number
of VMs used in Sponge is 5, 20-VMs and 25-VMs allocate 4×
and 5× more VMs compared to Sponge, respectively.

Fig. 15(a) illustrates the latency of 20-VMs, 25-VMs, and
Sponge during the bursty period. The latency of Sponge is in
between 20-VMs and 25-VMs. Compared to 25-VMs, which
has enough resources to handle 5× bursty loads, Sponge has
inherent scaling overheads due to the redirection and migra-
tion protocols. This is why the latency of Sponge is slightly
higher than 25-VMs.

In terms of cost, Fig. 15(b) shows a rough calculation of
cost according to the bursty duration in a day. For instance,
1% of bursty duration represents that bursty loads happen
for 24hr ∗0.01 during a day. Basically, the cost of Sponge is
smaller than others when bursty loads occur in short durations.
When the duration of the bursty load is less than 15%, Spon-
ge has lower latency and cost compared to 20-VMs. When
the bursty load persists (at more than 25% in Fig. 15(b)), the
cost of Sponge exceeds 25-VMs due to the high cost of the
SF instances. In this case, it is more beneficial to statically
over-provision VM resources in terms of latency and cost.
Nevertheless, as presented in existing works [36, 40], bursty
loads are mostly short-lived, and persistent peaks are compar-
atively much rare, resulting in their duration generally falling
much below 15% of the total time. Sponge provides mech-
anisms to initially provide prompt scaling with fast-starting
SFs regardless of the peak duration and later expands the
cluster to additional slow-starting VMs if the peaks persist,
making the solution effective with any bursty traffic in terms
of both cost and latency.

7 Related Work

To the best of our knowledge, Sponge is the first work that
addresses all technical challenges described in § 3. There are
some existing works that partially address the challenges, and
we compare them with Sponge.
Data communication across SF instances. Researchers
have exploited fast-starting SF instances for various work-
loads such as interactive data analytics [27, 44], video analyt-
ics [4, 21], and daily applications [20]. These applications are
also represented as DAGs, and shuffle operations are required
between SF instances. Their solutions to enable data commu-
nication across SF instances enable using additional VM relay
servers [21], using HDFS in VMs [27], building an ephemeral
storage service [31], and using a NAT-traversal technique [20].
Sponge router operators enable data communication across SF

instances preserving event-based stream processing with low
latency, without requiring any of the additional VM resources
or NAT-traversal technique.
Optimizing state migration. Rhino [18] and ChronoStre-
am [55] replicate states of stream queries across extra (over-
provisioned) machines to minimize state migration over-
heads. Replicating and holding states requires costly over-
provisioning of long-running resources like VMs. Holding
states on SFs will cause additional state recovery and cost
when SFs are reclaimed by cloud vendors. Megaphone [25]
proposes fluid migration that smoothly migrates states from
source to destination resources for a long period to reconfigure
system configurations. However, when bursty loads happen,
the reconfiguration must be executed in a short period of time.
As a result, a large amount of state migration is inevitable to
quickly migrate the load on VMs. In contrast, Sponge avoids
state migration from VMs to SFs by just forwarding data to
SFs and merging partial states in SFs into the existing VMs.
Scaling policy. Regarding scaling policies, SEEP [16],
StreamCloud [24], and Dhalion [19] use metrics like CPU uti-
lization for their decisions. Systems such as DS2 [28] aim to
measure the processing and output rates of individual dataflow
operators through system instrumentation. Many of these
scaling policies are designed to be agnostic to the underlying
scaling mechanisms and resource acquisition schemes. In con-
trast, the Sponge scaling policy also explicitly considers the
characteristics of SF instances and offloads the right amount
of computations to keep the CPU utilization high.

8 Conclusion
Sponge harnesses SF instances for offloading bursty loads
from existing VMs in streaming workloads. Sponge mini-
mizes task migration overheads and addresses data commu-
nication constraints on SF instances by inserting new stream
operators in the application DAG: router, transient, and merge
operators. Sponge also provides an offloading policy that de-
termines when and how to offload the increased input loads.
Our evaluation on AWS EC2 and Lambda shows that the
Sponge operators are effective in significantly reducing tail la-
tencies in stream processing upon unpredictable bursty loads,
compared to existing scaling mechanisms on VMs and SFs.

Acknowledgments
We thank our shepherd Maria Carpen-Amarie and the anony-
mous reviewers for their feedback. This work was supported
by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government
(MSIT) (No.2015-0-00221, Development of a Unified High-
Performance Stack for Diverse Big Data Analytics), the 2023
Research Fund (1.230019) of UNIST, and Electronics and
Telecommunications Research Institute(ETRI) grant funded
by the Korean government [23ZS1300].

312 2023 USENIX Annual Technical Conference USENIX Association

References
[1] AGACHE, A., BROOKER, M., FLORESCU, A., IORDACHE, A.,

LIGUORI, A., NEUGEBAUER, R., PIWONKA, P., AND POPA, D.-M.
Firecracker: Lightweight Virtualization for Serverless Applications. In
Proceedings of the 17th Usenix Conference on Networked Systems De-
sign and Implementation (USA, 2020), NSDI’20, USENIX Association,
p. 419–434.

[2] AKIDAU, T., BALIKOV, A., BEKIROĞLU, K., CHERNYAK, S., HABER-
MAN, J., LAX, R., MCVEETY, S., MILLS, D., NORDSTROM, P., AND
WHITTLE, S. MillWheel: fault-tolerant stream processing at internet
scale. VLDB Journal 6, 11 (2013), 1033–1044.

[3] AKIDAU, T., BRADSHAW, R., CHAMBERS, C., CHERNYAK, S.,
FERNÁNDEZ-MOCTEZUMA, R. J., LAX, R., MCVEETY, S., MILLS,
D., PERRY, F., SCHMIDT, E., AND WHITTLE, S. The Dataflow Model:
A Practical Approach to Balancing Correctness, Latency, and Cost in
Massive-scale, Unbounded, Out-of-order Data Processing. VLDB Jour-
nal 8, 12 (2015), 1792–1803.

[4] AO, L., IZHIKEVICH, L., VOELKER, G. M., AND PORTER, G.
Sprocket: A Serverless Video Processing Framework. In Proceedings
of the ACM Symposium on Cloud Computing (New York, NY, USA,
2018), SoCC ’18, Association for Computing Machinery, p. 263–274.

[5] Apache Commons Math. https://commons.apache.org/proper/
commons-math/, 2023.

[6] ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY,
A. S., RYVKINA, E., STONEBRAKER, M., AND TIBBETTS, R. Linear
road: a stream data management benchmark. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30
(2004), pp. 480–491.

[7] ARMBRUST, M., DAS, T., TORRES, J., YAVUZ, B., ZHU, S., XIN, R.,
GHODSI, A., STOICA, I., AND ZAHARIA, M. Structured Streaming:
A Declarative API for Real-Time Applications in Apache Spark. In
Proceedings of the 2018 International Conference on Management
of Data (New York, NY, USA, 2018), SIGMOD ’18, Association for
Computing Machinery, p. 601–613.

[8] AWS. Configuring Lambda function options, 2023. https:
//docs.aws.amazon.com/lambda/latest/dg/configuration-
function-common.html.

[9] AWS Lambda. https://aws.amazon.com/lambda, 2023.

[10] Azure Function. https://docs.microsoft.com/en-us/azure/
azure-functions/, 2023.

[11] Various Traffics in the Cloud. https://intercept.cloud/en/
news/checklist-part-1-choose-your-strategy-before-
you-migrate-to-azure/, 2023.

[12] Apache beam. https://beam.apache.org/.

[13] BINDSCHAEDLER, L., MALICEVIC, J., SCHIPER, N., GOEL, A., AND
ZWAENEPOEL, W. Rock You like a Hurricane: Taming Skew in Large
Scale Analytics. In Proceedings of the Thirteenth EuroSys Conference
(New York, NY, USA, 2018), EuroSys ’18, Association for Computing
Machinery.

[14] AWS SDK for Python (Boto3). https://boto3.amazonaws.com/
v1/documentation/api/latest/index.html, 2023.

[15] CARBONE, P., KATSIFODIMOS, A., EWEN, S., MARKL, V., HARIDI,
S., AND TZOUMAS, K. Apache Flink™: Stream and Batch Processing
in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.

[16] CASTRO FERNANDEZ, R., MIGLIAVACCA, M., KALYVIANAKI, E.,
AND PIETZUCH, P. Integrating Scale out and Fault Tolerance in Stream
Processing Using Operator State Management. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data
(New York, NY, USA, 2013), SIGMOD ’13, Association for Computing
Machinery, p. 725–736.

[17] Stream Processing with IoT Data: Challenges, Best Practices,
and Techniques. https://www.confluent.io/blog/stream-
processing-iot-data-best-practices-and-techniques/,
2023.

[18] DEL MONTE, B., ZEUCH, S., RABL, T., AND MARKL, V. Rhino: Ef-
ficient Management of Very Large Distributed State for Stream Process-
ing Engines. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 2020),
SIGMOD ’20, Association for Computing Machinery, p. 2471–2486.

[19] FLORATOU, A., AGRAWAL, A., GRAHAM, B., RAO, S., AND RA-
MASAMY, K. Dhalion: self-regulating stream processing in heron.
Proceedings of the VLDB Endowment 10, 12 (2017), 1825–1836.

[20] FOULADI, S., ROMERO, F., ITER, D., LI, Q., CHATTERJEE, S.,
KOZYRAKIS, C., ZAHARIA, M., AND WINSTEIN, K. From Lap-
top to Lambda: Outsourcing Everyday Jobs to Thousands of Transient
Functional Containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19) (Renton, WA, July 2019), USENIX Association,
pp. 475–488.

[21] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMANIAM,
K. V., ZENG, W., BHALERAO, R., SIVARAMAN, A., PORTER, G.,
AND WINSTEIN, K. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17)
(Boston, MA, Mar. 2017), USENIX Association, pp. 363–376.

[22] Google Cloud Function. https://cloud.google.com/functions/
docs/, 2023.

[23] GU, R., YIN, H., ZHONG, W., YUAN, C., AND HUANG, Y. Meces:
Latency-efficient Rescaling via Prioritized State Migration for Stateful
Distributed Stream Processing Systems. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22) (Carlsbad, CA, July 2022),
USENIX Association, pp. 539–556.

[24] GULISANO, V., JIMENEZ-PERIS, R., PATINO-MARTINEZ, M., SORI-
ENTE, C., AND VALDURIEZ, P. Streamcloud: An elastic and scalable
data streaming system. IEEE Transactions on Parallel and Distributed
Systems 23, 12 (2012).

[25] HOFFMANN, M., LATTUADA, A., AND MCSHERRY, F. Megaphone:
latency-conscious state migration for distributed streaming dataflows.
Proceedings of the VLDB Endowment 12, 9 (2019), 1002–1015.

[26] ISLAM, S., VENUGOPAL, S., AND LIU, A. Evaluating the Impact of
Fine-Scale Burstiness on Cloud Elasticity. In Proceedings of the Sixth
ACM Symposium on Cloud Computing (New York, NY, USA, 2015),
SoCC ’15, Association for Computing Machinery, p. 250–261.

[27] JAIN, A., BAARZI, A. F., KESIDIS, G., URGAONKAR, B., ALFARES,
N., AND KANDEMIR, M. SplitServe: Efficiently Splitting Apache
Spark Jobs Across FaaS and IaaS. In Proceedings of the 21st Interna-
tional Middleware Conference (New York, NY, USA, 2020), Middle-
ware ’20, Association for Computing Machinery, p. 236–250.

[28] KALAVRI, V., LIAGOURIS, J., HOFFMANN, M., DIMITROVA, D.,
FORSHAW, M., AND ROSCOE, T. Three steps is all you need: fast, ac-
curate, automatic scaling decisions for distributed streaming dataflows.
In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Association,
pp. 783–798.

[29] KALIM, F., XU, L., BATHEY, S., MEHERWAL, R., AND GUPTA, I.
Henge: Intent-driven multi-tenant stream processing. In Proceedings
of the ACM Symposium on Cloud Computing (2018), pp. 249–262.

[30] KE, Q., ISARD, M., AND YU, Y. Optimus: A Dynamic Rewriting
Framework for Data-Parallel Execution Plans. In Eurosys 2013 (April
2013), ACM.

[31] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEFFERLE, J.,
AND KOZYRAKIS, C. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX
Association, pp. 427–444.

USENIX Association 2023 USENIX Annual Technical Conference 313

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://aws.amazon.com/lambda
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://intercept.cloud/en/news/checklist-part-1-choose-your-strategy-before-you-migrate-to-azure/
https://intercept.cloud/en/news/checklist-part-1-choose-your-strategy-before-you-migrate-to-azure/
https://intercept.cloud/en/news/checklist-part-1-choose-your-strategy-before-you-migrate-to-azure/
https://beam.apache.org/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://www.confluent.io/blog/stream-processing-iot-data-best-practices-and-techniques/
https://www.confluent.io/blog/stream-processing-iot-data-best-practices-and-techniques/
https://cloud.google.com/functions/docs/
https://cloud.google.com/functions/docs/

[32] Lambda SnapStart. https://docs.aws.amazon.com/lambda/
latest/dg/snapstart.html, 2023.

[33] LI, S., GERVER, P., MACMILLAN, J., DEBRUNNER, D., MARSHALL,
W., AND WU, K.-L. Challenges and Experiences in Building an
Efficient Apache Beam Runner for IBM Streams. Proc. VLDB Endow.
11, 12 (aug 2018), 1742–1754.

[34] LIN, M., WIERMAN, A., ANDREW, L. L. H., AND THERESKA, E.
Dynamic right-sizing for power-proportional data centers. In 2011
Proceedings IEEE INFOCOM (2011), pp. 1098–1106.

[35] LION, D., CHIU, A., SUN, H., ZHUANG, X., GRCEVSKI, N., AND
YUAN, D. Don’t Get Caught in the Cold, Warm-up Your JVM: Under-
stand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems.
In Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation (USA, 2016), OSDI’16, USENIX
Association, p. 383–400.

[36] MAI, L., ZENG, K., POTHARAJU, R., XU, L., SUH, S., VENKATARA-
MAN, S., COSTA, P., KIM, T., MUTHUKRISHNAN, S., KUPPA, V.,
DHULIPALLA, S., AND RAO, S. Chi: A Scalable and Programmable
Control Plane for Distributed Stream Processing Systems. Proceedings
of the VLDB Endowment (2018), 1303–1316.

[37] MI, N., CASALE, G., CHERKASOVA, L., AND SMIRNI, E. Injecting
Realistic Burstiness to a Traditional Client-Server Benchmark. In Pro-
ceedings of the 6th International Conference on Autonomic Computing
(New York, NY, USA, 2009), ICAC ’09, Association for Computing
Machinery, p. 149–158.

[38] MIAO, H., JEON, M., PEKHIMENKO, G., MCKINLEY, K. S., AND
LIN, F. X. StreamBox-HBM: Stream Analytics on High Bandwidth
Hybrid Memory. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2019), ASPLOS ’19,
Association for Computing Machinery, p. 167–181.

[39] MÜLLER, I., MARROQUÍN, R., AND ALONSO, G. Lambada: Interac-
tive Data Analytics on Cold Data Using Serverless Cloud Infrastructure.
In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 2020), SIGMOD ’20,
Association for Computing Machinery, p. 115–130.

[40] NARAYANAN, D., DONNELLY, A., THERESKA, E., ELNIKETY, S.,
AND ROWSTRON, A. Everest: Scaling Down Peak Loads Through
I/O Off-Loading. In 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 08) (San Diego, CA, Dec. 2008),
USENIX Association.

[41] Netty. http://netty.io/, 2023.

[42] Nexmark benchmark suite. https://beam.apache.org/
documentation/sdks/java/testing/nexmark/, 2023.

[43] POTHARAJU, R., KIM, T., WU, W., ACHARYA, V., SUH, S., FOGA-
RTY, A., DAVE, A., RAMANUJAM, S., TALIUS, T., NOVIK, L., AND
RAMAKRISHNAN, R. Helios: Hyperscale Indexing for the Cloud &
Edge. Proc. VLDB Endow. 13, 12 (Aug 2020), 3231–3244.

[44] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuffling, Fast and
Slow: Scalable Analytics on Serverless Infrastructure. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19) (Boston, MA, Feb. 2019), USENIX Association, pp. 193–206.

[45] RAJADURAI, S., BOSBOOM, J., WONG, W.-F., AND AMARASINGHE,
S. Gloss: Seamless Live Reconfiguration and Reoptimization of Stream
Programs. In Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems (New York, NY, USA, 2018), ASPLOS ’18, Association
for Computing Machinery, p. 98–112.

[46] RASTEGAR, S. H., ABBASFAR, A., AND SHAH-MANSOURI, V. Rule
Caching in SDN-Enabled Base Stations Supporting Massive IoT De-
vices With Bursty Traffic. IEEE Internet of Things Journal 7, 9 (2020),
8917–8931.

[47] ROBINSON, B., POWER, R., AND CAMERON, M. A Sensitive Twitter
Earthquake Detector. In Proceedings of the 22nd International Con-
ference on World Wide Web (New York, NY, USA, 2013), WWW ’13
Companion, Association for Computing Machinery, p. 999–1002.

[48] SANDUR, A., PARK, C., VOLOS, S., AGHA, G., AND JEON, M. Jarvis:
Large-scale Server Monitoring with Adaptive Near-data Processing. In
2022 IEEE 38th International Conference on Data Engineering (ICDE)
(2022), IEEE, pp. 1408–1422.

[49] SHAH, M., HELLERSTEIN, J., CHANDRASEKARAN, S., AND
FRANKLIN, M. Flux: an adaptive partitioning operator for continuous
query systems. In Proceedings 19th International Conference on Data
Engineering (Cat. No.03CH37405) (2003), pp. 25–36.

[50] SONG, W. W., JEON, M., AND CHUN, B.-G. SWAN: WAN-Aware
Stream Processing on Geographically-Distributed Clusters. In Pro-
ceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems
(New York, NY, USA, 2022), APSys ’22, Association for Computing
Machinery, p. 78–84.

[51] SONG, W. W., YANG, Y., EO, J., SEO, J., KIM, J. Y., LEE, S., LEE,
G., UM, T., CHO, H., AND CHUN, B.-G. Apache Nemo: A Framework
for Optimizing Distributed Data Processing. ACM Transactions on
Computer Systems (TOCS) 38, 3-4 (2021), 1–31.

[52] UM, T., LEE, G., AND CHUN, B.-G. Pluto: High-performance iot-
aware stream processing. In 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS) (2021), pp. 79–91.

[53] VENKATARAMAN, S., PANDA, A., OUSTERHOUT, K., ARMBRUST,
M., GHODSI, A., FRANKLIN, M. J., RECHT, B., AND STOICA, I.
Drizzle: Fast and Adaptable Stream Processing at Scale. In Proceedings
of the 26th Symposium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP ’17, Association for Computing Machinery,
p. 374–389.

[54] WANG, L., FU, T. Z. J., MA, R. T. B., WINSLETT, M., AND ZHANG,
Z. Elasticutor: Rapid Elasticity for Realtime Stateful Stream Process-
ing. In the ACM International Conference on Management of Data
conference (SIGMOD) (2019), ACM.

[55] WU, Y., AND TAN, K.-L. ChronoStream: Elastic stateful stream
computation in the cloud. In 2015 IEEE 31st International Conference
on Data Engineering (2015), pp. 723–734.

[56] XU, D., LIU, X., AND VASILAKOS, A. V. Traffic-aware resource
provisioning for distributed clouds. IEEE Cloud Computing 2, 1 (2015),
30–39.

[57] YANG, Y., EO, J., KIM, G.-W., KIM, J. Y., LEE, S., SEO, J., SONG,
W. W., AND CHUN, B.-G. Apache Nemo: A Framework for Building
Distributed Dataflow Optimization Policies. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19) (Renton, WA, July 2019),
USENIX Association, pp. 177–190.

[58] ZHANG, C., YU, M., WANG, W., AND YAN, F. MArk: Exploiting
Cloud Services for Cost-Effective, SLO-Aware Machine Learning Infer-
ence Serving. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19) (Renton, WA, July 2019), USENIX Association, pp. 1049–
1062.

314 2023 USENIX Annual Technical Conference USENIX Association

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
http://netty.io/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/

	Introduction
	Background
	Stream Processing
	On-Demand Resource Provisioning

	Challenges
	Sponge Design
	Design Overview
	Compile-time Graph Rewriting Algorithm
	Dynamic Offloading Policy
	Detailed Offloading Process

	Reducing Cold Start Latency
	Correctness

	Implementation
	Evaluation
	Methodology
	Performance Analysis
	Graph Rewriting Effect
	Cold Start Latency Reduction Methods
	Latency-Cost Trade-Off

	Related Work
	Conclusion

