
Blaze: Holistic Caching for Iterative Data Processing
Won Wook SONG

FriendliAI
Jeongyoon Eo

Seoul National University
Taegeon Um

Samsung Research

Myeongjae Jeon∗
UNIST

Byung-Gon Chun∗
Seoul National University and

FriendliAI

Abstract
Modern data processingworkloads, such asmachine learning
and graph processing, involve iterative computations to con-
verge generated models into higher accuracy. An effective
caching mechanism is vital to expedite iterative computa-
tions since the intermediate data that needs to be stored in
memory grows larger over iterations, often exceeding the
memory capacity. However, existing systems handle interme-
diate data through separate operational layers (e.g., caching,
eviction, and recovery), with each layer working indepen-
dently in a greedy or cost-agnostic manner. These layers
typically rely on user annotations and past access patterns,
failing to make globally optimal decisions for the workload.

To overcome these limitations, Blaze introduces a unified
caching mechanism that integrates the separate operational
layers. Blaze dynamically captures the workload structure
and metrics using profiling and inductive regression, and
automatically estimates the potential data caching efficiency
associated with different operational decisions based on the
profiled information. To achieve this goal, Blaze incorporates
potential data recovery costs across stages into a single cost
optimization function, which informs the optimal partition
state and location. This approach reduces the significant disk
I/O overheads caused by oversized partitions and the recom-
putation overheads for partitions with long lineages, while
efficiently utilizing the constrained memory space. Our eval-
uations demonstrate that Blaze can accelerate end-to-end
application completion time by 2.02 − 2.52× compared to
recomputation-based MEM_ONLY Spark, and by 1.08 − 2.86×
compared to checkpoint-based MEM+DISK Spark, while re-
ducing the cache data stored on disk by 95% on average.

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629558

CCS Concepts: •Computer systems organization→Dis-
tributed architectures; • Software and its engineering
→ Distributed systems organizing principles; • Infor-
mation systems→ Data management systems.

Keywords: Data Processing, Distributed Systems, Caching

1 Introduction
Data analytics applications today are increasingly focused
on formulating models to emulate real-world phenomena
through methods like machine learning and graph process-
ing. For example, the PageRank algorithm captures the im-
portance of web pages from the vast amount of internet
data [52], while logistic regression has proven effective in
forecasting probabilities of certain events across numerous
fields [12]. Many of such applications exhibit multiple iter-
ations of repetitive operations that evolve the model into
high accuracy [24, 35, 39, 50]. To express and execute these
operations at hand, programmers typically rely on data an-
alytics systems built upon dataflow-based execution mod-
els [5, 36, 46, 74]. Here, caching plays a key role in system
efficiency, as reusing intermediate data eliminates the need
for recomputations when data is repeatedly accessed.

However, iterative data processing results in a consistent
expansion of intermediate data, putting a strain on memory
resources [26]. Unfortunately, simply provisioning ample
memory to accommodate all intermediate data is not a silver-
bullet solution given that data size can increase by more than
10× the input size over the iterations (§7.2). Moreover, while
each of the iterations has a declarative job structure, such
jobs are dynamically submitted until convergence iteration-
by-iteration, whichmakes the overall lineage of theworkload
unpredictable before the actual execution.

Furthermore, upon facingmemory shortages, a substantial
volume of intermediate data is dynamically evicted to be later
retrieved for reuse during the successive iterations. Notably,
the state (or location) of this intermediate data – whether
it is in memory, on disk, or not in any persistent storage –
also changes dynamically throughout the iterations, making
static analyses for optimal caching infeasible. As the data
distribution among tasks changes according to the input
data for each workload due to different data partitioning and
scheduler behaviors in different environments (i.e., even for
regularly-triggered repetitive workloads), it is unrealistic for
any system to have an oracle view of the data distribution

1

https://orcid.org/0000-0002-8530-2184
https://orcid.org/0000-0001-8086-384X
https://orcid.org/0000-0002-4372-6712
https://orcid.org/0000-0002-0748-6627
https://orcid.org/0000-0002-9863-7186
https://doi.org/10.1145/3627703.3629558

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

throughout the execution in advance. The key challenge
to address in this paper is thus to accurately estimate and
optimize the potential recovery costs of evicted intermediate
data during runtime.

Existing systems provide caching mechanisms composed
of three separate operational layers, caching, eviction, and
recovery, each of which behaves independently based on pre-
defined conditions [7, 57, 60, 68, 71]. For caching, existing
systems traditionally delegate caching decisions to expert
users with sophisticated knowledge of each of the workloads,
e.g., PageRank application [52]. These systems offer proper
APIs to users but allow intermediate data to be managed
at a coarse-grained dataset granularity, despite individual
data partitions being the actual computation units for each
parallel task [5–7, 60]. The caching layer blindly adheres to
user annotations without considering whether or not each
individual partition provides more significant caching ben-
efits than others, and is prone to caching annotated data
that incur minimal benefits or even have no future usage at
all [15]. As a result, this approach often leads to inefficient
utilization of memory space and inevitable cache misses.

Furthermore, the eviction and recovery layers in these sys-
tems are far from performance-optimized because they tend
to be cost-agnostic and lack proper harmonization. For exam-
ple, the decision regarding which intermediate data to evict
upon memory shortages usually relies on heuristic methods
that leverage past usage patterns, e.g., LRU [13] and LFU [32].
Such policies fall short in providing accurate results based on
actual partitionmetrics due to the aforementioned challenges
for accurately estimating the dynamically changing task data
distributions. The recovery of evicted data can be achieved
through either recomputation from its ancestor operators or
storing data onmulti-tiered storages (e.g., memory and disks)
to read it back upon subsequent accesses, but the potential
recovery costs of each method can vary significantly [55, 75].
Specifically, victim data may incur substantial disk I/O over-
heads if the data is oversized or conversely may result in
high regeneration costs if a long and expensive sequence
of recomputations is necessary. Unfortunately, current data
analytics systems do not determine how to appropriately
handle victims for performance and cost efficiency within
the memory capacity.
To prevent inefficient memory utilization, Blaze intro-

duces a caching mechanism that unifies the separate opera-
tional layers. In doing so, Blaze uses techniques that capture
workload lineage through light-weight profiling of the actual
workload on the target environment and applying inductive
regression on dynamically monitored and updated metrics
for individual partitions, which continuously influence po-
tential recovery costs throughout the workload. By capturing
the lineage, Blaze enables an automatic caching mechanism
that identifies caching candidates at partition granularity
based on their anticipated future references throughout the
workload. Specifically, the metrics profiled for each partition

include the time required to recompute the partition from its
computational input, the actual size of the partition, and the
current location or state of the partition. The unobserved
metrics during profiling are derived by inductive regression
based on the observed metrics.

Using these lineage and partition metrics, Blaze provides a
potential recovery cost estimationmodel. Thismodel empow-
ers the system to estimate potential recovery costs, including
the overheads of recomputation from the list of available
cached data based on the lineage, as well as the disk I/O
overheads that would be incurred if the partition were to
be written to and read from the disk, in an on-line man-
ner. Blaze’s cost model solves for selecting optimal partition
states that will result in the smallest potential recovery cost
in the workload. The cost model is implemented as an inte-
ger linear programming (ILP) model, a popular solution for
finding optimal values for minimization problems [37].

We implement Blaze on Apache Spark [7], with 6K lines of
code. Our evaluations on 11 r5.xlarge AWS EC2 instances [3]
show the performance improvements on two graph process-
ing workloads, PageRank and Connected Components, as
well as on four ML algorithms, including logistic regres-
sion (LR), K-means clustering (KMeans), gradient boosted
tree regression (GBT), and singular value decomposition++
(SVD++). In the evaluations, Blaze accelerates the end-to-end
execution time by 2.02 − 2.52× compared to recomputation-
based MEM_ONLY Spark, and by 1.08 − 2.86× compared to
checkpoint-based MEM+DISK Spark. Moreover, since Blaze
efficiently caches intermediate data, it achieves an average
reduction of 95% in cached data stored on disk compared to
MEM+DISK Spark.

2 Background
2.1 Dataflow Execution Model
Modern data analytics systems adopt a dataflow-based execu-
tion model, which represents data processing jobs as directed
acyclic graphs (DAGs) [46, 60, 68, 74], as illustrated in Fig. 1.
By representing jobs as DAGs, data processing systems have
been able to express and perform iterative computations
cohesively [31, 46, 68, 74]. Concretely, in Spark [7, 74], ver-
tices of a computational DAG represent resilient distributed
datasets (RDD) and edges represent the computations that
occur between the datasets. Thus, iterative computations
can be represented as a form of having vertices with several
outgoing edges that span different iterations. The compu-
tations can be categorized into transformations or actions,
which each computes a dataset to derive another dataset
or a workload result (e.g., statistics or a converged model),
respectively. Each transformation lazily performs parallel
computations (e.g., map, filter, join, groupByKey) to build
intermediate data as new RDDs [74], whereas actions trigger
computations and output results (e.g., collect, reduce).
Different computations have different overheads and re-

source usage patterns. For example, simple operators like
2

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

R25 R34

R37

R39

R37

R49

R51

R46

R43

R31 R42

R55

R54

R56R51

R43

R49

R61

R63

R58

R67

R66

R68

R55

Iteration 1

(Job1)

*Iteration 2

(Job2)

*Iteration 3

(Job3)

S6 S15 S26

S7 S16 S27

S0

R0

R1

R2

S1

R0

R1

R2

R5

Pre-processing (Job0,1)

… …

R25

R29

R15

R8 R12

R13

R17

..

R27

R31

R30

R33

R21

R20

…

… … …

…

S3 S5… …

…

: RDD set to be cached(a) (b)

Figure 1. A simplified code snippet of a Spark PageRank [14] on GraphX [35] (a), and the RDD dependencies of the PageRank
application (b). A Spark job is submitted for each iteration. Some stages, RDDs, and shuffle dependencies are omitted for
simplicity. Sx denotes a stage number and Rx denotes the ID of an RDD.

map and filter use less resources (e.g., CPU, memory, net-
work) compared to resource-heavy join or groupByKey op-
erators [26, 58, 59]. Conventionally, a job acts as a unit of
execution, which is triggered by an action and defined by the
designated group of operators represented as a DAG [5, 7, 58–
60, 68, 69, 71]. In iterative workloads, iterations are triggered
as identically-shaped jobs, which are chained according to
their dependencies on the input read job and previous it-
erations. While these jobs share their shape and computa-
tional logic across iterations, the underlying data partitions
are different, leading to different memory consumption and
data distributions across tasks (§2.2). Each logical dataset
(i.e., RDD) can be annotated to be cached or unpersisted
through user APIs provided by dataflow application seman-
tics [4, 7, 46], incurring dataset state transitions throughout
the execution.
2.2 Parallel Execution and Partition Sizes
A job consists of multiple stages, each of which is a pipeline
of operators that can be performed on individual elements.
Within a job, each logical dataset (i.e., RDD) is a set of multi-
ple partitions that are processed by parallel computational
tasks. Tasks describe the computational logic defined by the
operators within a stage, and simultaneously produce com-
putational results for the different partitions across a cluster
of machines. Data processing engines schedule jobs in units
of tasks on different machines, while also providing opti-
mizations to leverage data locality by scheduling dependent
tasks on equivalent machines [5–7, 60, 68]. Logically, stages
have their boundaries on shuffle operators, which search
and fetch elements of specific keys from each of the parent
partitions (e.g., groupByKey), involving data transfer and
aggregation over elements from multiple upstream tasks.

The actual computations defined by the operators are exe-
cuted while materializing the intermediate data into objects
in memory, and data (de)serialization is required if it requires
disk access or data transfer across a network. Along the com-
putations, partition sizes vary depending on the element keys
that each partition is designated with, as one key may be
overloaded compared to another. Consequently, task execu-
tion times also vary although parallel tasks perform identical

Memory Store

Disk Store

Task1 Task2 Task3
cache

evict and write victims to the disk

1

3

4

SparkExecutor

2
u

n
p

e
rs

is
t

re
c
o

v
e
r

Figure 2. Caching and eviction on a Spark executor. Each
task computes and caches RDD partitions into memory or
disk within the executor that it is scheduled onto.

computations. Hence, bottleneck tasks are key to optimiza-
tion as their dependent tasks require them to be completed
before performing the following shuffle operations and com-
putations. In iterative data processing, partitions of different
jobs and stages have complex and repetitive data dependen-
cies among each other, and particular intermediate data are
reused over the iterations.

2.3 Caching Iterative Workloads in Existing Systems
Existing data processing systems provide user APIs for
caching reusable data within memory or disks by anno-
tating the datasets to cache, preparing them for potential
invocations (Fig. 1(a)𝐿4, Fig. 2 1). Once each dataset is no
longer required in the workload, the user can also annotate
them to be unpersisted and discarded from the system
(Fig. 1(a)𝐿9, Fig. 2 2). The system compliantly follows
the annotations and performs caching and discarding in
units of datasets. Upon caching, the system first checks
whether there is enough space in memory, and evicts data
according to the eviction policy if it requires additional
space [13]. Data eviction occurs by unpersisting and
discarding data (Fig. 2 2) or spilling data on disk (Fig. 2 3),
according to the system settings (i.e., MEM_ONLY, MEM+DISK,
§ 3.2), especially upon memory-heavy computations like
join and groupByKey [26, 58]. Upon cache misses during
the execution, the system recovers the data by fetching
them from disk (Fig. 2 4), or regenerates the data in
memory through recomputations, instructed by recursive
fault-tolerance mechanisms of the systems [7, 74]. Data

3

https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

1 2 3 4 5 6 7 8 9 10
Executor Machine

20
40
60
80

100
Ev

ict
ed

 D
at

a
(G

B)

Figure 3. Caching at dataset granularity causes different
sizes of evicted data among different executor machines on
a PageRank application in our evaluation (§7).

recovery may also incur evictions to provide enough space
in memory, and the recovered data can be cached again in
memory according to the eviction policy. In short, runtime
caching follows separate rules in a conditional manner on
three different operational layers: cache and unpersist
operations are performed by the user, evictions occur
according to the eviction policy, and data is recovered by
retrieving them from disks or recomputing them upon cache
misses [7, 74].

3 Observation and Motivation
In this section, we observe the three separate operational
layers of current caching mechanisms, composed of caching,
eviction, and recovery layers, in more detail, and point out
their limitations to motivate our work.

3.1 Caching and Eviction Mechanisms
Caching layer. As shown in Fig. 1(a)𝐿4 and 𝐿9, caching
interfaces are provided through cache() and unpersist()
APIs for users to hint the datasets to persist after each itera-
tion. For example, in Fig. 1(b) Iteration 2, we can see that
as a result of caching annotations in Fig. 1(a), R49 and R55 are
cached, while R37 and R43, which were cached from the pre-
vious iteration, are unpersisted from disk. These caching and
unpersisting happen repeatedly in the following iterations.
Also, in addition to requiring manual efforts for deciding
right datasets to cache, the current approaches fall short
in providing fine-grained caching at partition granularity,
although each partition varies in terms of size and compu-
tational time. This can become problematic as the current
coarse-grained caching at dataset granularity causes execu-
tors to blindly cache partitions with different sizes (i.e. disk
I/O overheads) and computation overheads.
To illustrate, we show the effects of the diverse caching

overheads of the partitions in Fig. 3, which reveals two criti-
cal problems. First, we can directly see that coarse-grained
caching leads to inconsistent amounts of evictions on dif-
ferent executors, despite the efforts of system schedulers to
evenly distribute tasks among them [9]. This is mainly caused
by unnecessary caching of certain partitions with smaller po-
tential overheads, making inefficient usage of memory space
and making the system prone to future evictions. For exam-
ple, although the user only annotates caching for rankGraph
in Fig. 1(a), it leads to caching of all consisting partitions of

the RDDs in Fig. 1(b), while some partitions are unneces-
sary as they may not have any future usages or incur trivial
recovery costs [36] (§7.2). Furthermore, we can also infer
from these factors that caching overheads are often far from
uniform across partitions, and cannot be easily predicted
before the execution.

Eviction layer. Existing policy-based mechanisms for evict-
ing and managing cache data show several limitations. Basi-
cally, an eviction policy keeps a list of partitions and deter-
mines the priority of partitions in which to evict from the
cache storage. Many existing works focus on optimizing the
eviction layer to improve the cache efficiency. A few different
eviction policies include classic LRU (least recently used) [13]
and GDWheel [44] policies, learning-based TinyLFU (light-
weight least frequently used) [32] and LeCaR (learning cache
replacement) [62] policies, as well as dependency-aware LRC
(least reference count) [72] and MRD (most reference dis-
tance) [54] policies. As each name suggests, each policy de-
termines the eviction priorities based on historical usage
patterns and logical references, instead of on the specific
metrics of the individual data partitions.
While these policies have been successful in handling

caches in other contexts (e.g., CDN and web services) [19–
23, 32, 44, 61, 62], eviction for data processing workloads re-
quires consideration of many other factors. For example, for
intermediate data partitions, evictions have to consider the
future access patterns, different sizes, and the corresponding
recomputation and disk I/O costs of the different partitions,
in order to accurately capture the potential recovery costs.
Nevertheless, the information regarding partition sizes, loca-
tions, and computation times only become available upon
partitions being materialized in memory during the execu-
tion. Also, due to the challenges of varying data distribution
and the memory usage of different executors according to
the input data (Fig. 3), such factors cannot be easily predicted.
As such information evolves dynamically over the iterations,
it requires the system to be adaptive to the dynamically
changing conditions.

3.2 Recomputation and Disk I/O Costs
While managing cache storage according to the caching
policies, current systems fix their way (i.e., MEM_ONLY or
MEM+DISK) for each workload in using the different storages
for handling evictions. In other words, there is no flexibility
to choose which way to take for the different datasets or
partitions [7, 60, 68, 74]. This is primarily because existing
approaches have not been able to utilize the dynamically
changing potential recovery costs for their optimizations,
due to their implementation designs and challenges for pre-
dicting and tracking the varying and dynamically changing
partition data distribution among the tasks (§4.3). In short,
MEM_ONLY mode discards data from memory upon evictions
and depends on recursive recomputations, while MEM+DISK

4

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

PR CC LR KMeans GBT SVDPP
Application

0.0*10

1.0*10

2.0*10

Ac
cu

m
ul

at
ed

 Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(s
)

Disk I/O for Caching
Computation+Shuffle

Figure 4. The accumulated execution time of tasks in six
applications presented in our evaluation (§7), including the
total time of disk I/O costs for recovering evicted data. Data
(de)serialization is included in the disk I/O time.

mode keeps a multi-tiered storage for eviction to recover
data by fetching the checkpointed data from the slower sec-
ondary storages [2]. There also are ways to (de)serialize data
in memory or in off-heap space to save some memory, but
the basic mechanism is similar to MEM_ONLY mode in that
they recover data through recomputations. While these two
ways recover data by incurring different potential recovery
costs, the costs are not comparably uniform or deterministic,
making it difficult to calculate which method is better than
the other [55, 75].
Disk I/O costs. Disk I/O costs are incurred upon writing
and reading cached data to and from underlying storages
(e.g., SSDs, HDDs) to spill and refetch the data for evicting
and recovering data in MEMORY_AND_DISK mode. We can see
in Fig. 4 that disk I/O overhead is the major source of bottle-
neck in two graph processing (i.e., PageRank and Connected-
Components) and several machine learning (i.e., Singular-
ValueDecomposition++, GradientBoostedTrees) applications,
where the detailed experimental setup is described in §7. The
disk I/O costs also exhibit the overhead for (de)serializing
data in memory to access them on disks. Obviously, if the
partitions are larger in size, it would incur more disk I/O
costs. Therefore, applications with large partition sizes incur
more disk I/O costs than other applications, especially like
PageRank where disk costs compose more than 70% of the
end-to-end execution time.
Recomputation costs. Recomputation costs are the com-
putational time incurred when a partition requires upstream
ancestor operators to recursively produce their intermediate
data in order to derive the desired result. As shown in Fig. 5,
computations with longer lineages in later iterations tend
to incur more recomputation costs. While it can be easily
sought that it would be more advantageous to use disks as
secondary storages to store cache data, we can see in Fig. 4
that LogisticRegression is the only workload that produces
small disk I/O overheads due to the relatively smaller size of
the cached data (i.e., ML model) and fewer datasets that are
annotated to cached. In other cases, recomputation costs may
be smaller than disk costs, and they should be considered
as an option for some partitions to take for recovering the
intermediate data, instead of simply spilling them on disks.

1 2 3 4 5 6 7 8 9 10
Iteration

0
50

100
150
200
250

To
ta

l R
ec

om
p.

Ti

m
e

(s
)

R85
R97

R109
R121

R133

Figure 5. Breakdown of the total recomputation time for
each iteration in PageRank (§7). The RDDs incurring the
highest recomputation time within the iteration are labeled
from iteration 6 to 10 (RDD 85, 97, 109, 121, and 133).

4 Considerations for Cost-aware Caching
In this section, we describe our design goals and the chal-
lenges to achieving the ideal case for caching in comparison
to the existing mechanisms.

4.1 To Cache, or Not To Cache?
First of all, instead of blindly caching all data that is anno-
tated to be cached as in existing systems [7, 13], we aim to
first determine whether or not it would be advantageous to
cache the data in memory (Fig. 2 1). We must first keep in
mind that only the partitions with future usages should be
considered, as the others will occupy memory space without
any benefit. For a reused partition 𝑝𝑖 , it is obvious that it is
advantageous to cache it if there is enough memory space
to store 𝑝𝑖 . However, in cases where memory space is con-
strained, it is advantageous to cache data in memory only if
the 𝑝𝑖 is to incur more potential recovery costs than other
cached partitions that are already in memory. If the poten-
tial recovery costs are not considered, it results in evictions
of some partitions that will eventually incur more costs in
the future, which is undesirable. Therefore, upon trying to
cache a partition 𝑝𝑖 , we compare its potential recovery costs
against other available cached partitions, and also consider
the options to directly discard them or write them on disk if
the benefits of storing in memory are limited. This consid-
eration is taken both when a partition first attempts to be
cached, as well as when the partition is recovered through a
cache miss and becomes a candidate for caching again.

4.2 To Evict, or Not To Evict?
In cases where it requires some evictions of cached partitions
to store an expensive partition 𝑝𝑖 , we aim to carefully select
the partitions to evict based on the potential recovery costs,
instead of on history-based caching policies [13, 32, 49, 62,
72]. Since each partition incurs a different recomputation and
disk cost, it is also important to choose in which state to evict
and keep each of the partitions, as discussed in §3.2. For some
partitions, it may be advantageous to simply discard the data
and recompute them, if they are too oversized compared
to their recomputation overheads (Fig. 2 2). For others, it
may be more advantageous to spill and store them on disk,

5

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

panc

p1

pdes
c
o

m
p

(
p

d
e
s
)

p1 is evicted and unpersisted

panc

p1

pdes

c
o

m
p

(
p

d
e
s
)

ref(panc) = 1 ref(panc) = 2

p2 p2

Figure 6. The dynamically changing comp(𝑝𝑑𝑒𝑠) and
ref(𝑝𝑎𝑛𝑐) upon evicting and unpersisting 𝑝1 from the cache.

if they have smaller partition sizes while their computations
have been more time-consuming (e.g., model calculation for
LR) (Fig. 2 3). Both aspects are carefully considered in our
solution for choosing and evicting partitions from memory,
alongwith the considerations for the potential recovery costs
in the calculations, to perform data recovery in a timely
manner (Fig. 2 4).

4.3 Dynamically Changing Data Dependency
While it is possible to find an optimal caching solution with
prior knowledge of the partition sizes and the recomputa-
tion times, an accurate off-line analysis and prediction is
extremely difficult to achieve. This is because even if the
workload is repeatedly run on a daily or a weekly basis, the
data distribution and the partition sizes vary with different
input data. Moreover, even with an accurate estimation of
the data distribution, the potential recovery costs dynami-
cally change during runtime. At one point in time, a partition
can be in memory, while at another point it can be evicted
and discarded or written on disk. For example, in Fig. 6, if
𝑝1 is unpersisted, the recomputation cost for 𝑝𝑑𝑒𝑠 will in-
crease from 𝑝1→𝑝𝑑𝑒𝑠 to 𝑝𝑎𝑛𝑐→𝑝1→𝑝𝑑𝑒𝑠 , if 𝑝𝑎𝑛𝑐 resides in
the cache. This recomputation cost can be extended even
further from the source input data if the required partitions
are not in the cache. Also, future dependencies can also dy-
namically change upon unpersisting partitions. When trying
to compute for 𝑝𝑑𝑒𝑠 and 𝑝2, it initially does not incur any ref-
erences to 𝑝𝑎𝑛𝑐 , but after unpersisting 𝑝1, 𝑝𝑎𝑛𝑐 is referenced
by both 𝑝𝑑𝑒𝑠 and 𝑝2 through 𝑝1. Such evictions and unper-
sist decisions often cause dynamic chained reactions in the
potential recovery costs over the progress of the workload,
as the cached partitions also change dynamically. Therefore,
it is exceptionally difficult to derive and consider all of the
different cases to calculate the potential costs.

5 Blaze Design
In this section, we describe an overview of how our system
operates and our design principles in formulating a universal
cost model for caching. Next, we describe how we estimate
and keep track of the partition metrics throughout the work-
load. Finally, we formulate our cost model for optimizing
the memory space and describe our solution for finding the

Execution Phase

Blaze

Runner
Spark

App

Dependency

Extraction

Phase

Spark Master

s
e
n
d

 t
h
e
 m

e
ta

d
a
ta

o
f

p
a
rt

it
io

n
s

(3
)
s
e
n
d

 m
e
tr

ic
s

o
f

c
a
c
h
e
d

 d
a
ta

CostLineage

 extract repeated patterns

(6) cost update/management

(2) build CostLineage

Memory Store

Disk Store

Task1 Task2 Task3

Unified Decision Layer (UDL)

Spark Executor

(4) make decisions

1

2

3

4

5

6

Log

Store

Figure 7. The overview of Blaze.

optimal caching state for each of the partitions. Our idea is
applicable to all caching-enabled distributed data processing
systems based on dataflow graphs with parallel tasks and
partitions [5, 40, 46, 60, 68, 74].

5.1 Blaze Overview
Blaze performs cost optimization based on the different par-
tition states and metrics, and on the potential recovery costs
derived from them. In order to track and accurately estimate
the potential recovery costs, Blaze performs the following
actions, as shown in Fig. 7. First, 1○ Blaze runs the workload
on a small portion of the original input data (i.e., < 1MB) to
extract and capture the code path and dependencies between
datasets (i.e., DAG structure), and 2○ builds a CostLineage
that keeps track of the workload lineage and performs in-
ductions on future partition metrics based on the extracted
partition dependencies and existing metrics (§5.3). Next, 3○
Blaze sends the metrics to the executor and performs esti-
mated calculations for the potential recovery costs for each
partition on the CostLineage (§5.4). Based on the calculated
costs, 4○ Blaze automatically makes unified decisions for
caching, eviction, and recovery based on our ILP-based solu-
tion (§5.5, §5.6). Once a task finishes its execution for a par-
ticular partition, 5○ the executor sends the metadata of the
new partitions back to the master to 6○ dynamically update
and manage the partition metrics back on the CostLineage
with timely information on the run.

6

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

5.2 Design Principles
Our key idea for addressing the limitations of existing ap-
proaches is to devise a unified cost-aware caching mecha-
nism that automatically decides the desired state of each
partition. In Blaze, this state indicates whether to keep the
cache data of a particular partition 𝑝𝑖 ∈ 𝑃 , delineated within
each dataset abstraction (e.g., RDD), in memory (𝑚𝑖), on disk
(𝑑𝑖), or to simply discard and unpersist (𝑢𝑖) the partition,
based on our cost estimation for the potential overheads.
The state of each partition 𝑝𝑖 can thus be defined as follows:

∀𝑝𝑖 ∈ 𝑃, 𝑚𝑖 + 𝑑𝑖 + 𝑢𝑖 = 1 (𝑚𝑖 , 𝑑𝑖 , 𝑢𝑖 ∈ {0, 1}) (1)

As indicated, only one of these variables becomes 1 at any
point in time, and this acts as a constraint to the partition
state throughout the optimization. State transitions among
the cached partitions can occur as evictions (𝑚𝑖→𝑢𝑖 ,𝑚𝑖→𝑑𝑖),
recomputations (𝑢𝑖→𝑚𝑖 , 𝑢𝑖→𝑑𝑖), and recovery from disks
(𝑑𝑖→𝑚𝑖). Disks may also unpersist data (𝑑𝑖→𝑢𝑖), in cases
where the disk size is also constrained.

A potential recovery cost of a partition is the overhead
that may occur in the future if the partition does not reside
in memory at the execution time. Concretely, we estimate
the potential disk access cost of 𝑝𝑖 at time 𝑡 , 𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡),
along with the potential recomputation cost of partition 𝑝𝑖
at time 𝑡 , 𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡) (§5.4). If the 𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡) is smaller than
𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡), discarding and recomputing 𝑝𝑖 would be more
beneficial than writing it on disk, as it reduces the high
(de)serialization and disk read/write time while incurring
a small recomputation time. Therefore, assuming that we
have abundant disk space for caching, the ideal potential
recovery cost 𝑐𝑜𝑠𝑡 (𝑝𝑖 , 𝑡) of the partition, if not cached in
memory, would be the minimum between the two values:

𝑐𝑜𝑠𝑡 (𝑝𝑖 , 𝑡) = min(𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡), 𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡)) (2)

If the cached partition 𝑝𝑖 resides in memory (i.e., 𝑚𝑖 =

1, 𝑑𝑖 = 0, 𝑢𝑖 = 0), the potential recovery cost is disregarded,
while our aim is to keep the sum of all potential recovery
costs,

∑
𝑝𝑖 ∈𝑃−𝑀 𝑐𝑜𝑠𝑡 (𝑝𝑖 , 𝑡), as low as possible for all partitions

that do not reside in memory (𝑝𝑖 ∈ 𝑃 −𝑀), where𝑀 = {𝑝𝑖 ∈
𝑃 |𝑚𝑖 = 1, 𝑑𝑖 = 0, 𝑢𝑖 = 0} (∵ 𝐸𝑞. 1).

5.3 The CostLineage for Tracking Partition Metrics
In order to dynamically keep track of the partition metrics,
Blaze first builds a CostLineage based on the workload DAG
produced by the initial dependency extraction phase before
the actual execution. Since the input data is minuscule (i.e.,
< 1MB), the dependency extraction phase usually succeeds
in capturing the dependency among the multiple iterations
of the workload DAG until its convergence within its timeout
(i.e., 10 sec). Even if it fails to do so, Blaze is able to perform
inductions on future iterations based on the already captured
iterations, which we describe later in this subsection. Also,
Blaze can derive the number of potential references for each

of the partitions until the end of the application based on the
dependencies, which are used for automatic caching (§5.5).

As shown in Fig. 8, the CostLineage dynamically detects
and merges duplicate dataset abstractions from different
jobs together based on their IDs to manage them as a single
abstraction. For example, R37 from iterations 1 and 2 are
merged together in the CostLineage. On the captured data
dependencies, CostLineage annotates the list of profiled
partition sizes and their states on the vertices (i.e., datasets)
and the computation times on the edges between each of
the dependent partitions along the execution. Concretely, as
the initial iterations of the actual workload do not request
for evictions due to the sufficient memory space in the early
stages of execution, the partition metrics for the initial itera-
tions can be simply recorded on the CostLineage without
the requirement for cache optimizations. Along the execu-
tion, executors materialize iterators of the partition data and
gain access to the actual partition sizes, locations, and com-
putation times. These metadata are continuously updated
on the CostLineage to reflect up-to-date information for
the partition metrics. Also, if the partition data is read or
written to disk, Blaze also measures the time it takes for the
disk operations and derives the disk throughput to keep the
hardware performance metrics with timely information.
Once the metrics of the initial iterations are recorded,

CostLineage detects the congruent datasets that play the
same role in different iterations by analyzing the DAG struc-
ture and the sizes of the datasets from the initial iterations.
Concretely, CostLineage takes the sum of partition sizes for
each dataset and uses a simple pattern searching algorithm
based on the differences in the dataset sizes of adjacent op-
erators to find the repeated patterns [29]. By doing so, we
can detect the iterative patterns among datasets that are
generated from the same code path in the loop, and perform
inductive regression to predict the trend of partition sizes for
future iterations. Concretely, for the missing values of par-
tition metrics in the CostLineage, Blaze inductively fills in
temporarily approximated values of metrics for the undiscov-
ered partitions by applying a lightweight linear regression
model based on the existing metrics from previous iterations
throughout the application [51]. Likewise, future iterations
that hadn’t yet been captured during the profiling phase can
be inducted similarly. Based on these partition metrics, we
can estimate the potential costs for recomputation and disk
overheads of the different partitions whenever a caching
decision needs to be made.

5.4 Potential Recovery Cost Estimation
We describe how we estimate 𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡) and 𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡)
individually. Simply put, the cost is calculated in units of
seconds to predict the time it potentially takes to recover
data for future invocations. The disk cost, 𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡), can
be calculated simply by dividing the size of the partition
𝑠𝑖𝑧𝑒 (𝑝𝑖) by the profiled read/write throughput of the disk,

7

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

R25 R34

R37

R39

R49

R51

R46

R61

R63

R58

Iteration 1 Iteration 2 Iteration 3

S6 (Job1) S15 (Job2) S26 (Job3)

R61

R73

R75

R70

R73

R75

R70

S39 (Job4)

Iteration 4

S39 (Job4)

Iteration 4CostLineage

R25 R34

R37

R39

R37

R49

R51

R46 R49

R61

R63

R58

Iteration 1 Iteration 2 Iteration 3

S6 (Job1) S15 (Job2) S26 (Job3)

…… …
insert

Original Lineage
(Induced)

Figure 8. A CostLineage constructed from the extracted RDD lineages of the PageRank application in the dependency
extraction phase. Duplicate RDDs are dynamically detected and merged upon new iterations and future iterations are induced.

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑑𝑖𝑠𝑘 , which can be profiled within the system dur-
ing runtime or initially approximated through conventional
softwares [34]:

𝑐𝑜𝑠𝑡𝑑 (𝑝𝑖 , 𝑡) =
𝑠𝑖𝑧𝑒 (𝑝𝑖)

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑑𝑖𝑠𝑘
(3)

The recomputation cost for a partition 𝑝𝑖 has to be defined
recursively with respect to the ancestor upstream partitions
that are not cached in memory𝐴𝑖 = {𝑝𝑘 ∈ 𝑃 −𝑀 | 𝑝𝑘 → 𝑝𝑖 }.
We define the longest recomputation time from the upstream
partitions as the recomputation cost, 𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡) (§3.2), which
dynamically changes according to the CostLineage:
𝑐𝑜𝑠𝑡𝑟 (𝑝𝑖 , 𝑡) = max

𝑝𝑘 ∈𝐴𝑖

((1 −𝑚𝑘) · 𝑐𝑜𝑠𝑡 (𝑝𝑘 , 𝑡) + 𝑐𝑜𝑠𝑡𝑘→𝑖) (4)

where 𝑐𝑜𝑠𝑡𝑘→𝑖 is the computation time for generating 𝑝𝑖 from
𝑝𝑘 and 𝑐𝑜𝑠𝑡 (𝑝𝑘 , 𝑡) is defined in Eq. 2, only effective when 𝑝𝑘
is not in memory (i.e.,𝑚𝑘 = 0, 𝑤ℎ𝑖𝑙𝑒 𝐸𝑞. 1).

As the logics in Eq. 3 and Eq. 4 are respectively made up of
simple arithmetic and requires a shallow stack of recursive
computations on the recorded metrics, we can compute the
potential recovery costs for both cases within milliseconds.

5.5 Finding the Optimal Partition States
Based on the collected dependencies and the partition met-
rics on our CostLineage (§5.3), we can now formulate our
solution to minimize the sum of potential recovery cost (i.e.,
time) as an integer linear programming (ILP) model, with
respect to our cost estimation methods (§5.4). Recognizing
that a job corresponds to an iteration in iterative workloads,
assume that we wish to optimize our cache storage for a
set of future partitions within a set of jobs, 𝑝 𝑗 ∈ 𝐽 . We can
set up a constraint for our memory space for all relevant
partitions, 𝑝𝑖 ∈ 𝑃 , that are recorded on our CostLineage, for
our ILP objective function to minimize the potential costs
for the partitions that are to be used in our upcoming jobs
𝑝 𝑗 ∈ 𝐽 . In our solution, we set the boundary for the set of
jobs 𝐽 to be the current job and its successive job, inferred by
the CostLineage and the system metrics on the workload
progress [9] to keep the ILP overhead under a performance
boundary (i.e., < 5 seconds). While the ILP cost may seem
non-negligible, Blaze hides away the overhead by carefully
determining when to trigger optimizations to produce punc-
tual results for seamless workload execution, which is further
described in §5.6. As a result, potential costs related to disk
I/O and recomputation are adaptively minimized for the near

future, regardless of the workload progress in the current
job:

Minimize
∑︁
𝑝 𝑗 ∈ 𝐽

(𝑑 𝑗 · 𝑐𝑜𝑠𝑡𝑑 (𝑝 𝑗 , 𝑡) + 𝑢 𝑗 · 𝑐𝑜𝑠𝑡𝑟 (𝑝 𝑗 , 𝑡)) (5)

Subject to:
∑︁
𝑝𝑖 ∈𝑃

𝑠𝑖𝑧𝑒 (𝑝𝑖) ·𝑚𝑖 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑒𝑚 ,

𝐸𝑞. 1, 𝐸𝑞. 2, 𝐸𝑞. 3, 𝐸𝑞. 4 (6)

In cases where disk space is also constrained, the ILP can
be simply extended by adding another constraint to Eq. 6,∑

𝑝𝑖 ∈𝑃 𝑠𝑖𝑧𝑒 (𝑝𝑖) ·𝑑𝑖 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑑𝑖𝑠𝑘 , where we set 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑑𝑖𝑠𝑘
as an abundant value in this paper.

5.6 Automatic Caching
Instead of relying on user annotations, Blaze attempts to
automatically cache partitions after each stage execution, if
the partition has future references in the CostLineage and
is expected to be reused in the future. Upon caching, Blaze
determines whether caching a partition would reduce more
potential recovery cost than the already cached partitions
that reside in memory, by comparing the size of the parti-
tions and their expected potential costs. As the CostLineage
dynamically keeps track of the partition states and metrics,
it can easily find the potential recovery costs of the cached
partitions. Similarly, if the partition does not have any fu-
ture usages, Blaze automatically unpersists the data from the
cache storage to quickly acquire free space after each stage
execution, similar to Nectar [36].
Note that automatic caching and unpersists consider the

full application DAG captured by the CostLineage, whereas
the ILP considers the potential costs only for a couple of up-
coming iterations (jobs) to optimize ILP performance with
an upper bound and trigger state transitions only for the
near future. The ILP solver is triggered whenever a new job
is submitted and auto-caching is triggered whenever a stage
is completed, and partitions are subsequently migrated or
unpersisted. By doing so, ILP can solve for caching decisions
for the upcoming job before it actually arrives, and the ILP
overheads can be hidden. Through these steps, Blaze auto-
matically decides on the caching, eviction, and recovery of
the partitions on a unified layer in each executor, according
to the derived optimal state of the partitions.

8

https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

6 Blaze Implementation
Blaze is implemented on top of Spark 3.3.2 with around
6K lines of Scala 2.12 code, and the Blaze runner is imple-
mented with 500 lines of bash script. In order to track the
computation time and sizes of partitions, each RDD imple-
mentation is modified with code for profiling. The Blaze-
RPCEndpoint receives and updates these metrics on our
CostLineage and CostAnalyzer, maintained in the Blaze-
BlockManagerEndPoint in the Spark master, and the ILP im-
plementation uses this data to solve for the ILP, which is asyn-
chronously triggered by Bash scripts. With the ILP results,
the (Unified)MemoryManager [17], MemoryBlockManager,
and DiskBlockManager interact with the MemoryStore [15]
and DiskStore components to apply the results on the parti-
tions cached in the local executor memory. Each task caches
its partitions into the executor where it is scheduled, with-
out storing and sending the partitions to other executors, as
most tasks access the cached data on local executors with the
locality-aware task scheduling optimizations implemented
on Spark [9]. The ILP solver is implemented with the Gurobi
optimizer 10.0.1 [37]. Our implementations can be similarly
reproduced in other systems by modifying the components
of the data plane and implementing an online metric tracker
for the individual data partitions, accompanied by an ILP
solver.

7 Evaluation
In our evaluation, we observe the system performance of
Blaze compared to other caching mechanisms (§7.2), distin-
guish the factors that contribute to the Blaze performance
improvement (§7.3), and provide additional details on specific
settings and Blaze components (§7.4, §7.5).

7.1 Methodology

Environment. All evaluations are executed on 11
r5a.2xlarge (8 vCPU, 64GB memory, and 10Gbps network)
AWS EC2 instances, where one is reserved for the master
and the other ten are for the executors. A 100GB SSD (gp2) is
used as a disk caching store in each instance. Each instance
runs 2 executors, each with 25GB executor memory, which
totals up to 20 executors with a total of 500GB executor
memory in our evaluation. As the size of the memory that
the system uses to store caches in each executor cannot be
defined as a fixed value [17], we empirically consent on the
upper bound of aggregate memory store capacity as 170 GB
by observing that Spark uses up to 170 GB (i.e., 34%) of the
total executor memory for caching for all applications in
our evaluation. Although we set the total memory sizes in
our environment to be reasonable towards the input dataset
sizes in our evaluation workloads, it would require larger
proportions of memory capacities on the cluster to execute
workloads on larger datasets.

Workloads. We evaluate two graph processing and four
machine learning applications, which are widely-used repre-
sentative iterative applications that benefit from caching of
RDDs in the execution. In all of the applications, the peak
amount of cached data exceeds the cache memory size of
Spark. For each application, we report an average of three
results of the execution. For all systems aside from Blaze that
require manual caching and unpersist decisions, we follow
the caching decisions implemented on Spark GraphX [35]
and MLlib [50] libraries [8, 10–12, 14, 16].
• PageRank (PR): PR is a graph processing algorithm that
calculates the importance of web pages. Web pages are rep-
resented as vertices, and connectivities between them are
represented as edges [52]. We generate a synthetic dataset
with 25 million vertices using SparkBench [45].
• Connected Components (CC): CC is another graph pro-
cessing algorithm that finds all connected components in a
given graph [28]. We use the same input dataset as in PR.
• Logistic Regression (LR): LR is a basic regression algo-
rithm in machine learning [42]. For input data, we use the
criteo dataset [30] day 0 data, which is 106 GB, among the
24 days of data.
• Gradient Boosted Trees (GBT): GBT is an ensemble
learning method that combines multiple decision trees to
create a strong predictive model for classification and re-
gression [70]. In the GBT workload, we utilize 50GB of data
generated by HiBench [38] in the LibSVM format.
• Singular Value Decomposition++ (SVD++): SVD++ is
an extension of SVD, which is a machine learning algo-
rithm that uses matrix factorization for recommendations,
such as for recommending new movies based on user pref-
erences [43]. We generate a synthetic 31 GB input dataset
with a rating data of 15 million users, each with 50 items.
• K-means Clustering (KMeans): K-Means is an unsu-
pervised learning algorithm used for clustering data into
groups [47]. For the K-Means workload, we employ 90GB of
data generated by HiBench [38] based on uniform distribu-
tion.
Systems. We compare Blaze against the performance of the
workloads on the following systems.
• MEM_ONLY Spark: Spark abides by the cache and
unpersist annotations provided by users with a least-
recently-used (LRU)-based eviction policy by default. Spark
runs on the MEM_ONLY mode by default, which unpersists
cached data upon evictions and performs recomputations to
recover data on cache misses. We use Spark 3.3.2.
• MEM+DISK Spark: Spark provides the MEM_AND_DISK mo-
de, which enables the system to use two-tiered storage for
storing evicted cache data onto secondary storage like disks,
to later recover data by reloading them from disks, instead
of by recomputing them, on cache misses. This mode also
follows caching annotations provided by users with the LRU-
based eviction policy.

9

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

(a) PR
0

1000

2000

3000

Jo
b

Co
m

pl
et

io
n

Ti
m

e
(s

ec
)

Spark (MEM) Spark (MEM+DISK) Spark+Alluxio LRC MRD Blaze

(b) CC
0

500

1000

1500

(c) LR
0

500
1000
1500
2000

(d) KMeans
0

500

1000

1500

(e) GBT
0

500
1000
1500
2000

(f) SVD++
0

600
1200
1800
2400
3000

Figure 9.An end-to-end performance comparison on MEM_ONLY Spark, MEM+DISK Spark, Spark+Alluxio, LRC, MRD, and Blaze
in various applications. We run each application three times and plot the average with an error bar at the top.

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(a) PR

0.0*10

0.5*10

1.0*10

1.5*10

2.0*10

Ac
cu

m
ul

at
ed

 Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(s
)

Disk I/O Time for Caching Alluxio I/O Time for Caching Computation+Shuffle

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(b) CC

0.0*10

0.5*10

1.0*10

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(c) LR

0.0*10

0.5*10

1.0*10

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(d) KMeans

0.0*10
0.2*10
0.4*10
0.6*10
0.8*10

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(e) GBT

0.0*10

0.2*10

0.5*10

0.8*10

1.0*10

Spark
 (M

EM)

Spark
 (+

DISK)

Spark
+Allux.

Spark
+LRC

Spark
+MRD

Blaz
e

(f) SVD++

0.0*10

0.5*10

1.0*10

1.5*10

Figure 10. A breakdown of cost with the accumulated total task execution times. In MEM+DISK Spark (annotated as Spark
(+DISK)), LRC, and MRD, the disk I/O time of cached data becomes the cost. In Spark+Alluxio, the Alluxio I/O time of cached
data becomes the cost, as they are the potential recovery cost experienced from the applications that are run on Spark.

• Spark + Alluxio: Alluxio [2] is a widely used tiered
distributed storage for data analytics systems. As an external
caching store, Alluxio optimizes the placement of cached data
between its fast (i.e., memory) and slow tiers (i.e., disks) while
transparently exposing them to the client side. Spark+Alluxio
also represents other variants of the MEM_AND_DISK Spark
(e.g., MEMORY_AND_DISK_SER and OFF_HEAP), as it provides
serialization to reduce the size of cached data in memory,
with additional disk support. We integrate Alluxio v2.9.1 on
Spark v3.3.2, where all cached data are written to and read
from Alluxio. We configure the Alluxio memory tier for it
to use the same amount of memory that Spark uses for its
memory store, and co-locate Alluxio and Spark on the same
cluster for its best performance.
• LRC and MRD: Among numerous works that optimize evic-
tion policies through conventional algorithms and those that
exploit the data dependency information on dataflow lin-
eages, we choose LRC (Least Reference Count) [72] andMRD
(Most Reference Distance) [54] as representative ones. The
considered conventional caching algorithms include LRU,
FIFO, LFUDA [18, 48], GDWheel [44], TinyLFU [32], and
LeCaR [62], and data dependency-aware algorithms include
LERC [73], LCRC [63], and LCS [33]. The conventional algo-
rithms exhibit limitations in capturing future information
and show marginal improvements, if any, to the default LRU
algorithm, which exhibits limited performance compared to
the dependency-aware algorithms. Among the dependency-
aware algorithms, we selectively compare the ones with the
best performances in our evaluations: LRC and MRD. LRC
evicts data with the smallest reference count, which is the
number of future references in RDD lineages. MRD evicts

data with the largest reference distance, which is the num-
ber of stages left until being referenced, and prefetches data
with the smallest reference distance whenever free space
becomes available in the executor memory. Unlike Blaze,
which captures application-wide dependencies during the
dependency extraction phase, they only use the dependency
information provided by the currently submitted job, with-
out utilizing the complete knowledge of the partition metrics
and their dependencies across multiple jobs. LRC and MRD
on MEM+DISK Spark are evaluated in §7.2, and on MEM_ONLY
Spark are evaluated in §7.4.
Terms. In order to reduce the confusion regarding jobs and
completion times, we use the term application completion
time (ACT) to describe the end-to-end completion times,
instead of job completion time (JCT), in our evaluations. Also
to distinguish the evictions to disks and by unpersisting, we
use the terms eviction (to disk) to represent the state𝑚𝑖 → 𝑑𝑖
and unpersist to represent the states𝑚𝑖 → 𝑢𝑖 and 𝑑𝑖 → 𝑢𝑖
(§5.2). The accumulated task execution times are the sum of
the execution times among all of the tasks from all the jobs
in the particular applications.

7.2 Performance Analysis
Fig. 9 shows the end-to-end ACT for all workloads in various
systems. Note that for all results of Blaze, the time taken for
the dependency extraction phase and performing inductive
methods are included in the measurements, which takes
up < 4% of the total ACT. Overall, Blaze achieves 2.52×,
2.02×, 2.38×, 2.11×, 2.15×, and 2.42× speed up compared to
MEM_ONLY Spark, and 2.86×, 1.57×, 1.08×, 1.31×, 1.49×, and
2.15× speed-up compared to MEM+DISK Spark in PR, CC, LR,

10

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

KMeans, GBT, and SVD++, respectively. The key reason for
the performance improvement comes from auto-caching and
the unified decision layer of Blaze that significantly reduces
the recomputation time and the aggregate disk I/O time. As
shown in Fig. 10, while MEM_ONLY Spark does not exhibit
any disk usages, Blaze reduces the disk I/O overhead by 95%,
87%, 99%, 97%, 97% and 98% for the accumulated value for
all tasks on MEM+DISK Spark in PR, CC, LR, KMeans, GBT,
and SVD++, respectively. This indicates that Blaze uses the
fixed memory space efficiently as a caching store.
The potential benefit of the unified cost-aware caching

and eviction decisions of Blaze is distinct in cases where the
disk I/O overhead dominates the ACT. For example, Blaze
achieves the highest speed-up of the end-to-end execution
time compared to MEM+DISK Spark in PR (Fig. 9 (a)). This is
because, in PR, the aggregated disk I/O time takes 70% of the
accumulated total task execution time of MEM+DISK Spark,
which is the largest percentage among all applications (45%,
3%, 32%, 39%, and 56% in CC, LR, KMeans, GBT, and SVD++,
respectively).
The main reason for PR having the largest disk I/O over-

head in MEM+DISK Spark is that its working set size is much
larger than other applications. As the working set size in-
creases, more amounts of data are written to disk, and this
results in higher disk I/O overheads. For PR, the average
total size of data on disk reaches 306 GB (peak 427 GB) in
MEM+DISK Spark, whereas that of CC, LR, and SVD++ reaches
220 GB (peak 335 GB), 41 GB (peak 122 GB), and 45 GB (peak
98 GB), respectively. While the executor disk capacity is
abundant (i.e., 1000GB) to host all spilled data in our evalua-
tions, we can see that the performance of MEM+DISK Spark is
worse compared to MEM_ONLY Spark due to the large disk I/O
overheads. On the other hand, Blaze significantly reduces
the amount of data on disk compared to MEM+DISK Spark;
by 83%, 81%, 100%, 96%, 96%, and 97% in PR, CC, LR, KMeans,
GBT, and SVD++, respectively. This is mainly due to the
timely removal of data with smaller potential recovery costs
on Blaze, which eliminates unnecessary disk I/O overheads
caused by evictions to disk for the data that incur small re-
computation overheads. Blaze writes data to disk only when
its recomputation overhead is larger than its disk I/O over-
head, which reduces the aggregate disk write time for the
data with future usages.
In LR, the speed-up of Blaze is 1.08× compared to

MEM+DISK Spark (Fig. 9 (c)) which is relatively small, be-
cause the main bottleneck comes from the computation, and
not the disk I/O overhead, as LR exhibits fewer references to
the cached data and smaller ML model sizes. Unlike other
applications, LR only caches a total of three RDDs for each
iteration, where only one of them is actually referenced
to be reused later on. As Blaze automatically captures
this fact through CostLineage, it prevents unnecessary
disk I/O overhead and incurs no evictions at all. Other
solutions blindly adhere to the caching annotation, and

incur disk I/O overheads. While disk I/O overheads are
relatively small in LR, this eventually incurs evictions
from the unnecessary caching and inefficient memory
usage in MEM_ONLY and MEM+DISK Spark. This causes
large recomputation overheads in MEM_ONLY Spark and
contributes to the 2.38× speedup in Blaze. LRC and MRD
policies successfully capture future references within the
job, and perform relatively well (1.06× speedup in Blaze for
both cases) by avoiding misguided eviction decisions, but
still incur disk I/O overhead for evicting the unnecessary
data on disks. This also contributes to the reason for
Spark+Alluxio performing worse compared to MEM+DISK
Spark in LR, because Spark+Alluxio requires additional
data (de)serialization overheads in memory, to read and
write data through Alluxio [2].

Interestingly, the amount of cached size of SVD++ is
smaller than CC in MEM+DISK Spark, but its disk I/O time
takes 56% of the accumulated total task execution time,
which is larger than that of CC. We observe that the average
time for serializing a partition in SVD++ is 2.5 − 6.4× larger
than that of others, as the serialization overhead differs
across different data types. Still, due to the smaller model
sizes, MEM+DISK Spark shows better performance compared
to MEM_ONLY Spark. In short, the main bottleneck of SVD++
comes from the data serialization time, which contributes to
disk I/O overheads, and this is the main reason for SVD++
displaying large disk I/O overheads even when the amount
of cached data is small.

In the case of KMeans and GBT, these workloads present
larger model sizes compared to LR, yet they demonstrate
smaller disk I/O overheads compared to SVD++. The differ-
ences are caused by the fact that while the KMeans model
involves more centroids and cluster assignments along the it-
erations, GBT requires larger models due to its complex tree
structures. Due to these factors, KMeans, GBT, and SVD++
show similar trends among the different baselines, while they
exhibit differences in their intensity due to their differences
in their recomputation and disk I/O overheads caused by the
model sizes and the computational logic.
Compared to the MEM+DISK Spark that adapts LRC and

MRD policies, Blaze achieves up to 1.8× speed-up, mainly
because such eviction policies only optimize the eviction
layer among the three layers (i.e., caching, eviction, and
recovery layers), while Blaze incorporates the separate oper-
ational layers together in its solution. Moreover, as existing
dependency-aware policies only consider the data depen-
dency of the current job, they are prone to underestimating
the future numbers of data references that are to be reused
across future jobs. Also, they often face situations where
multiple partitions have the same reference counts or ref-
erence distances, in which case they arbitrarily break the
tie between the potential victims, without considering the
fact that the different partitions are likely to incur largely
different disk I/O overheads.

11

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

(a) PR
0

1000

2000

3000

Jo
b

Co
m

pl
et

io
n

Ti
m

e
(s

ec
)

Spark (MEM+DISK) +AutoCache +CostAware Blaze

(b) CC
0

300
600
900

1200
1500

(c) LR
0

200
400
600
800

(d) KMeans
0

300

600

900

(e) GBT
0

300
600
900

1200

(f) SVD++
0

500
1000
1500
2000
2500

Figure 11. A performance breakdown for Blaze.

7.3 Performance Breakdown
In this section, we provide a detailed breakdown of the per-
formance gain achieved by Blaze through Fig. 11. For the
breakdown, we implement the following two cases on top
of MEM+DISK Spark with individual components of Blaze:
• +AutoCache automatically caches and unpersists individ-
ual partitions based on future usages after each stage com-
pletion like Blaze, on top of MEM+DISK Spark, instead of ad-
hering to user annotations in the caching layer. This option
does not consider the potential recovery costs.
• +CostAware performs the cost-aware eviction like Blaze
along with the auto-caching enabled, which additionally
selects the victim partitions from the memory based on the
sorted potential recovery costs for disk I/O overheads in the
eviction layer. It includes the Blaze cost model for evictions to
disks but excludes the option to recompute data for recovery,
as well as the ILP solution.
Note that Blaze incorporates the AutoCache, CostAware
mechanisms, and also the ILP caching decision solution that
solves for the minimum potential recomputation and disk
I/O costs, on top of MEM+DISK Spark.
+AutoCache vs. MEM+DISK Spark. Comparing +AutoCache
against MEM+DISK Spark shows the effectiveness of the au-
tomatic caching and unpersisting mechanism of Blaze in the
caching layer. +AutoCache accelerates the ACT by 1.15×,
1.14×, 1.08×, 1.01×, 1.08×, and 1.06× in PR, CC, LR, KMeans,
GBT, and SVD++, respectively. +AutoCache in LR already
consumes all of the 1.08× speed-up, as it successfully pre-
vents the disk I/O overheads incurred by the evictions and
recovery of the models in MEM+DISK Spark. With +Auto-
Cache, the automatically-selected working set of potentially-
referenced cached data in LR fits in memory during the
iterations, as discussed in §7.2. In KMeans, auto-caching has
limited improvement, due to the uniform distribution and
thus smaller skews among partitions. In PR, CC, GBT, and
SVD++, auto-caching improves system performance due to
the following two reasons. First, it selects a smaller num-
ber of partitions to cache compared to the annotation-based
and coarse-grained caching techniques on Spark. Concretely,
auto-caching selectively caches partitions from 26 and 33
RDDs in PR and CC, whereas Spark caches 28 and 36 RDDs
as a whole. The cached number of RDDs is identical in both
cases for GBT and SVD++, but fine-grained caching reduces
the amount of cached data. Second, as auto-unpersisting
timely removes RDDs without future references at the end

of each stage execution, it allows the system to quickly ac-
quire free space, increasing the effective memory store space
before having to find the user annotation to unpersist data.
Consequently, this reduces the inefficient usage of memory
space and the unnecessary disk write overheads caused by
evictions of unused data.
+CostAware vs. +AutoCache. Comparing +CostAware
against +AutoCache shows the effectiveness of the potential
recovery cost model for disk I/O overheads, specifically
within the eviction layer. Compared to +AutoCache, the
+CostAware accelerates the ACT by 1.69×, 1.11×, 1.14×,
1.14×, and 1.27× in PR, CC, KMeans, GBT, and SVD++. The
key reason for the performance improvement of applying
the cost model comes from the reduced disk I/O overheads
of evicted data, by selecting victim partitions with the
smallest disk access costs. While LR does not benefit from
the cost model in this experiment, the potential benefit is
noticeable in cases where the size of the working set exceeds
the available memory store capacity, as shown with PR, CC,
KMeans, GBT, and SVD++.
Blaze vs. +CostAware. Comparing Blaze against +Cost-
Aware shows the effectiveness of the ILP caching decision
solution on Blaze. Compared to +CostAware, Blaze further
accelerates the ACT by 1.47×, 1.25×, 1.14×, 1.21×, and 1.61×
in PR, CC, KMeans, GBT, and SVD++, respectively. The main
difference between Blaze and +CostAware is two-fold. First,
+CostAware always caches data in memory or writes data on
disk regardless of the costs of the data to be cached, as it does
not compare the costs before caching (§4.1). In contrast, Blaze
unifies the caching decision for all partitions, and caches
data in memory only when the cost of the data to cache
is larger than the costs of the potential victims already in
memory. This way, Blaze prevents the case of caching data
with low cost at the expense of evicting data with high cost.
Second, Blaze writes data on disk only when its potential
recomputation cost is larger than the potential disk access
cost, which reduces the potential disk I/O overhead. Also,
the memory space is used more efficiently and effectively,
as it successfully solves for the partition states in which it
incurs the minimum potential recovery costs for near-future
executions.
With all of the optimization combined, Blaze exhibits

2.86×, 1.57×, 1.08×, 1.31×, 1.49×, and 2.15× speed-up in
ACT compared to MEM+DISK Spark in PR, CC, LR, KMeans,
GBT, and SVD++, respectively.

12

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

PR CC LR SVD++
(a) Applications

1000
2000

Nu
m

 E
vi

ct
io

n

PR CC LR SVD++
(b) Applications

0

100000

Ac
cu

m
ul

at
ed

 R
ec

om
p.

 T
im

e
(s

)
Spark(MEM) LRC MRD Blaze(MEM)

Figure 12. The number of evictions and total recomputation
time of evicted RDDs while only using memory.

7.4 Number of Evictions and Recomputation Time
Fig. 12 illustrates the number of evictions and recomputa-
tion time of evicted partitions on Blaze without disk support
and MEM_ONLY Spark, along with its variants that use LRC
and MRD policies as the eviction policy. Blaze still shows
performance improvements with its auto-caching and cost-
aware eviction mechanisms, while demonstrating limited
application, as it excludes the potential disk I/O costs from
consideration within its solution. Especially for LR, Blaze
does not incur any eviction, as the cached partitions fit in
memory by automatically caching only the partitions with
future references (§7.2). LRC and MRD are also successful in
capturing the cached data with future references within the
current job in LR, but evictions still occur as it also caches
and evicts the unreferenced data to abide by the user annota-
tions. In contrast, MEM_ONLY Spark incurs a large number of
evictions, as blindly caching three RDDs exceeds thememory
capacity, and the LRU policy results in frequent recompu-
tations. For SVD++, while Blaze incurs more evictions than
other systems in terms of number, the total recomputation
time is only 32% compared to MEM_ONLY Spark, showing
that Blaze successfully captures the potential recovery costs
within its mechanism. For PR and CC, even though Blaze
does not use disks and incurs some additional overheads, it
successfully captures the potential recomputation overheads
and manages to efficiently use the memory capacity to incur
minimum potential overheads in the workload.

7.5 Profiling Overhead vs. Benefits
In order to analyze the performance benefit against the over-
head for profiling, we show the comparison with and with-
out the initial profiling phase for dependency extraction in
Fig. 13. Without the dependency extraction across jobs, the
profiling overhead can be avoided, but the cost of RDDs ref-
erenced in the future jobs can be underestimated and evicted,
as Blaze can miss the potential usages of the partitions into
reflection. Consequently, enabling the profiling phase ac-
celerates the completion time by up to 1.64× compared to
the approach that builds the application lineage on the run,

PR CC LR SVD++
Applications

0.0
0.5
1.0

No
rm

al
ize

d
AC

T 0.61 0.77 1.00 0.92
Blaze w/o Profiling Blaze w/ Profiling

Figure 13. The normalized ACT of Blaze with and without
dependency profiling, including the profiling overhead.

as shown in Fig. 13. The profiling bases its execution on a
< 1MB data from the original input load, and the overhead
is upper-bounded by the 10 second timeout, which takes up
< 2% of the total execution time in our evaluations. Profiling
plays a key role in providing automatic caching and esti-
mating the potential costs for longer downstream lineages
within the workload. Especially, profiling is more beneficial
for applications where many partitions are referenced across
multiple jobs (PR and CC). The benefit of profiling in LR is
limited because it only has a single RDD in each iteration
that is referenced within the jobs.

8 Related Work
Cost-Aware Caching. Cost-aware caching is a widely-used
approach to optimize caching and eviction in various fields
including web services [21, 23], in-memory key-value
stores [20, 44], and CDNs [19, 22], where defining the
cost metric that can properly capture the needs of various
workloads plays a key role in achieving performance
gain. However, little has been known about how to adopt
cost-aware caching for iterative data analytics. Blaze defines
the cost metric by identifying the key factors specific to
the context of iterative workloads, where decisions based
on the metrics successfully bring end-to-end performance
improvements.
ExploitingDataDependencies forDataAnalytics.There
are various approaches that exploit the data dependencies of
data analytics applications to optimize prefetchings [1, 54]
and evictions [33, 54, 63, 65, 66, 72, 73]. However, existing
works limit optimization opportunities, as they primarily
focus on optimizing the eviction layer among the three lay-
ers that consist of the caching mechanism: caching, eviction,
and recovery layers. Blaze unifies the decisions for caching,
eviction, and recovery of data in a single decision layer and
provides automatic caching decisions based on the tracked
information. Also, compared to the cost metric of Blaze that
captures the actual performance penalties with future refer-
ence, computation, data size, and disk access time, utilizing
only the data dependencies inside a job as a metric for evic-
tion decision has many limitations in achieving end-to-end
performance improvements, as shown in §7.
Computation Sharing across Applications. In data-
centers, there are many works on sharing computations
across different applications to improve the application
performance [27, 36, 41, 56]. Their primary goal is to decide

13

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

on the data to keep and share in the cluster caching store,
which is large enough to keep them all. Unlike such works,
the primary goal of Blaze is to minimize the potential
overheads caused by evictions and cache misses in an
application across the memory or two-tiered storages with
disks, in cases where the memory store is limited to fit all
of the data to cache. Therefore, Blaze optimizes not only to
decide on the data to cache, but also to select where to keep
the data: in memory, on disk, or simply to unpersist them.
GPU Memory Management. Recent deep learning (DL)
works research on optimizing tensor placements by deciding
on the data to keep in GPU memory, evict to CPU memory,
or to unpersist and recompute [25, 53, 64, 67, 76]. Although
their approach is similar to Blaze, the cost metric and deci-
sion algorithm of Blaze is tailored for handling challenges
that are more general than for DL-specific workloads. Blaze
is tailored for any general distributed iterative data analytics
workloads by efficiently managing and updating the esti-
mated costs for a large number of parallel partitions.

9 Conclusion
Blaze provides an automatic caching mechanism, that unifies
the separate operational layers of existing caching methods
together (i.e., caching, eviction, and recovery layers), to adap-
tively provide optimal caching decisions at any time within
iterative data processing workloads. Blaze bases its caching
decisions on the dynamically-updated CostLineage, which
is initially built by extracting data dependencies through
profiling, and inductively updated and predicted on-the-run
based on the partition metrics measured along the actual
execution over the iterations. By automatically choosing the
partitions with future references to cache, and calculating
the potential costs with the partition metrics collected on
CostLineage, Blaze successfully captures and derives the
optimum states for the cached data in the way that it mini-
mizes the sum of potential costs within the workload with an
ILP-based solution. Our evaluations show that Blaze speeds
up end-to-end performance by up to 2.86× and optimizes
the cache data by 95% on average with optimized automatic
caching compared to conventional caching mechanisms.

Acknowledgments
We thank our shepherd David Cock and the anonymous
reviewers for their feedback. This work was supported by
the Research Fund of Samsung Electronics DS Division,
the 2023 Research Fund (1.230019) of UNIST, and the IITP
grant funded by the Korea government (MSIT) (No.2020-
0-01336, Artificial Intelligence graduate school support
(UNIST); No.2015-0-00221, Development of a Unified
High-Performance Stack for Diverse Big Data Analytics).

References
[1] Mania Abdi, Amin Mosayyebzadeh, Mohammad Hossein Hajkazemi,

Ata Turk, Orran Krieger, and Peter Desnoyers. 2019. Caching in
the Multiverse. In 11th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 19). USENIX Association, Renton, WA.
https://www.usenix.org/conference/hotstorage19/presentation/abdi

[2] Alluxio, Inc. 2023. Alluxio - Data Orchestration for the Cloud. https:
//www.alluxio.io

[3] Amazon Web Services, Inc. 2023. Amazon AWS. https://aws.amazon.
com

[4] Apache Software Foundation. 2023. Apache Beam. https://beam.
apache.org.

[5] Apache Software Foundation. 2023. Apache Flink. https://flink.apache.
org/.

[6] Apache Software Foundation. 2023. Apache Nemo. https://nemo.
apache.org.

[7] Apache Software Foundation. 2023. Apache Spark. https://spark.
apache.org.

[8] Apache Software Foundation. 2023. Spark Connected Compo-
nents. https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/
scala/org/apache/spark/graphx/lib/ConnectedComponents.scala.

[9] Apache Software Foundation. 2023. Spark DAG Scheduler.
https://github.com/apache/spark/blob/branch-2.4/core/src/main/
scala/org/apache/spark/scheduler/DAGScheduler.scala.

[10] Apache Software Foundation. 2023. Spark Gradient Boosted
Trees. https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/
scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala.

[11] Apache Software Foundation. 2023. Spark K-means Cluster-
ing. https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/
scala/org/apache/spark/ml/clustering/KMeans.scala.

[12] Apache Software Foundation. 2023. Spark Logistic Regres-
sion. https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/
scala/org/apache/spark/ml/classification/LogisticRegression.scala.

[13] Apache Software Foundation. 2023. Spark LRU Evic-
tion. https://spark.apache.org/docs/latest/rdd-programming-
guide.html#removing-data.

[14] Apache Software Foundation. 2023. Spark PageRank.
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/
scala/org/apache/spark/graphx/lib/PageRank.scala.

[15] Apache Software Foundation. 2023. Spark RDD Block Evic-
tion. https://github.com/apache/spark/blob/master/core/src/main/
scala/org/apache/spark/storage/memory/MemoryStore.scala#L434

[16] Apache Software Foundation. 2023. Spark SVD++. https:
//github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/
org/apache/spark/graphx/lib/SVDPlusPlus.scala.

[17] Apache Software Foundation. 2023. Spark Unified Memory Man-
ager. https://github.com/apache/spark/blob/master/core/src/main/
scala/org/apache/spark/memory/UnifiedMemoryManager.scala

[18] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and
Tai Jin. 2000. Evaluating Content Management Techniques for Web
Proxy Caches. SIGMETRICS Perform. Eval. Rev. 27, 4 (mar 2000), 3–11.
https://doi.org/10.1145/346000.346003

[19] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S. Berger. 2020.
Caching with Delayed Hits. In Proceedings of the Annual Confer-
ence of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (Virtual Event, USA) (SIGCOMM ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 495–513.
https://doi.org/10.1145/3387514.3405883

[20] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Im-
proving Cache Hit Rate by Maximizing Hit Density. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 389–403. https://www.usenix.
org/conference/nsdi18/presentation/beckmann

14

https://www.usenix.org/conference/hotstorage19/presentation/abdi
https://www.alluxio.io
https://www.alluxio.io
https://aws.amazon.com
https://aws.amazon.com
https://beam.apache.org
https://beam.apache.org
https://flink.apache.org/
https://flink.apache.org/
https://nemo.apache.org
https://nemo.apache.org
https://spark.apache.org
https://spark.apache.org
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala
https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala
https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
https://github.com/apache/spark/blob/v3.3.2/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
https://spark.apache.org/docs/latest/rdd-programming-guide.html#removing-data
https://spark.apache.org/docs/latest/rdd-programming-guide.html#removing-data
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/memory/MemoryStore.scala#L434
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/memory/MemoryStore.scala#L434
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala
https://github.com/apache/spark/blob/v3.3.2/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/memory/UnifiedMemoryManager.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/memory/UnifiedMemoryManager.scala
https://doi.org/10.1145/346000.346003
https://doi.org/10.1145/3387514.3405883
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/nsdi18/presentation/beckmann

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

[21] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware Caching –
Dynamic Reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). USENIX Association, Carlsbad, CA, 195–212. https://www.usenix.
org/conference/osdi18/presentation/berger

[22] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017.
AdaptSize: Orchestrating the Hot Object Memory Cache in a Content
Delivery Network. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 483–498. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/berger

[23] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017.
Hyperbolic Caching: Flexible Caching for Web Applications. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIXAssoci-
ation, Santa Clara, CA, 499–511. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/blankstein

[24] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexan-
dre V. Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold
Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and
Shirish Tatikonda. 2016. SystemML: Declarative Machine Learning
on Spark. Proc. VLDB Endow. 9, 13 (sep 2016), 1425–1436. https:
//doi.org/10.14778/3007263.3007279

[25] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
2016. Training Deep Nets with Sublinear Memory Cost. (2016).
arXiv:1604.06174 [cs.LG]

[26] Brian Cho and Ergin Seyfe. 2019. Taking advantage of a disaggregated
storage and compute architecture.

[27] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo
Curino, and Gregory R. Ganger. 2020. Unearthing inter-job dependen-
cies for better cluster scheduling. In 14th USENIX Symposium onOperat-
ing Systems Design and Implementation (OSDI 20). USENIX Association,
1205–1223. https://www.usenix.org/conference/osdi20/presentation/
chung

[28] Fan Chung and Linyuan Lu. 2002. Connected components in random
graphs with given expected degree sequences. Annals of combinatorics
6, 2 (2002), 125–145.

[29] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2022. Introduction to algorithms. MIT press.

[30] CriteoLabs. 2023. Terabyte Click Logs. https://labs.criteo.com/2013/
12/download-terabyte-click-logs-2

[31] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symposium on Operating Systems
Design & Implementation (OSDI 04). USENIX Association, San Fran-
cisco, CA. https://www.usenix.org/conference/osdi-04/mapreduce-
simplified-data-processing-large-clusters

[32] Gil Einziger, Roy Friedman, and Ben Manes. 2017. TinyLFU: A Highly
Efficient Cache Admission Policy. ACM Trans. Storage 13, 4, Article 35
(nov 2017), 31 pages. https://doi.org/10.1145/3149371

[33] Yuanzhen Geng, Xuanhua Shi, Cheng Pei, Hai Jin, and Wenbin Jiang.
2017. LCS: an efficient data eviction strategy for spark. International
Journal of Parallel Programming 45, 6 (2017), 1285–1297.

[34] Sebastien Godard. 2023. iostat. https://github.com/sysstat/sysstat
[35] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing
in a Distributed Dataflow Framework. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX Asso-
ciation, Broomfield, CO, 599–613. https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/gonzalez

[36] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic
Management of Data and Computation in Datacenters. In
9th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 10). USENIX Association, Vancouver, BC.

https://www.usenix.org/conference/osdi10/nectar-automatic-
management-data-and-computation-datacenters

[37] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual.
https://www.gurobi.com

[38] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
2010. The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. In 2010 IEEE 26th International Con-
ference on Data Engineering Workshops (ICDEW 2010). 41–51. https:
//doi.org/10.1109/ICDEW.2010.5452747

[39] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng,
An Xu, Zhanhao Liu, and Shuo Tu. 2019. Tangram: Bridging Immutable
and Mutable Abstractions for Distributed Data Analytics. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-
ciation, Renton, WA, 191–206. https://www.usenix.org/conference/
atc19/presentation/huang

[40] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In EuroSys. 59–72.

[41] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay
Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram
Rao. 2018. Computation Reuse in Analytics Job Service at Microsoft.
In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 191–203. https://doi.org/10.1145/
3183713.3190656

[42] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein.
2002. Logistic Regression: A Self-Learning Text. Springer.

[43] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multi-
faceted Collaborative Filtering Model. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (Las Vegas, Nevada, USA) (KDD ’08). Association for Comput-
ing Machinery, New York, NY, USA, 426–434. https://doi.org/10.1145/
1401890.1401944

[44] Conglong Li and Alan L. Cox. 2015. GD-Wheel: A Cost-Aware Replace-
ment Policy for Key-Value Stores. In Proceedings of the Tenth European
Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 5,
15 pages. https://doi.org/10.1145/2741948.2741956

[45] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura.
2015. SparkBench: A Comprehensive Benchmarking Suite for in Mem-
ory Data Analytic Platform Spark. In Proceedings of the 12th ACM
International Conference on Computing Frontiers (Ischia, Italy) (CF ’15).
Association for Computing Machinery, New York, NY, USA, Article
53, 8 pages. https://doi.org/10.1145/2742854.2747283

[46] Google LLC. 2023. Google Cloud Dataflow. https://cloud.google.com/
dataflow

[47] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions
on Information Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/
TIT.1982.1056489

[48] Dhruv Matani, Ketan Shah, and Anirban Mitra. 2021. An O(1) al-
gorithm for implementing the LFU cache eviction scheme. (2021).
arXiv:2110.11602 [cs.DS]

[49] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In 2nd USENIX Conference
on File and Storage Technologies (FAST 03). USENIX Association, San
Francisco, CA. https://www.usenix.org/conference/fast-03/arc-self-
tuning-low-overhead-replacement-cache

[50] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. 2016. Mllib: Machine learning in apache spark. The
Journal of Machine Learning Research 17, 1 (2016), 1235–1241.

[51] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
2021. Introduction to linear regression analysis. John Wiley & Sons.

15

https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.14778/3007263.3007279
https://arxiv.org/abs/1604.06174
https://www.usenix.org/conference/osdi20/presentation/chung
https://www.usenix.org/conference/osdi20/presentation/chung
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2
https://www.usenix.org/conference/osdi-04/mapreduce-simplified-data-processing-large-clusters
https://www.usenix.org/conference/osdi-04/mapreduce-simplified-data-processing-large-clusters
https://doi.org/10.1145/3149371
https://github.com/sysstat/sysstat
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi10/nectar-automatic-management-data-and-computation-datacenters
https://www.usenix.org/conference/osdi10/nectar-automatic-management-data-and-computation-datacenters
https://www.gurobi.com
https://doi.org/10.1109/ICDEW.2010.5452747
https://doi.org/10.1109/ICDEW.2010.5452747
https://www.usenix.org/conference/atc19/presentation/huang
https://www.usenix.org/conference/atc19/presentation/huang
https://doi.org/10.1145/3183713.3190656
https://doi.org/10.1145/3183713.3190656
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/2741948.2741956
https://doi.org/10.1145/2742854.2747283
https://cloud.google.com/dataflow
https://cloud.google.com/dataflow
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://arxiv.org/abs/2110.11602
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache

EuroSys ’24, April 22–25, 2024, Athens, Greece W.W. SONG, et al.

[52] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: Bringing order to the web. Tech-
nical Report. Stanford InfoLab.

[53] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-Based GPU Mem-
ory Management for Deep Learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 891–905.
https://doi.org/10.1145/3373376.3378505

[54] Tiago B. G. Perez, Xiaobo Zhou, and Dazhao Cheng. 2018. Reference-
Distance Eviction and Prefetching for Cache Management in Spark. In
Proceedings of the 47th International Conference on Parallel Processing
(Eugene, OR, USA) (ICPP ’18). Association for Computing Machinery,
New York, NY, USA, Article 88, 10 pages. https://doi.org/10.1145/
3225058.3225087

[55] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime Mech-
anism to Partition Shared Caches. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06). 423–432.
https://doi.org/10.1109/MICRO.2006.49

[56] Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan,
and Carlo Curino. 2019. SparkCruise: Handsfree Computation Reuse
in Spark. Proc. VLDB Endow. 12, 12 (aug 2019), 1850–1853. https:
//doi.org/10.14778/3352063.3352082

[57] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun
Murthy, and Carlo Curino. 2015. Apache Tez: A Unifying Frame-
work for Modeling and Building Data Processing Applications. In
Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1357–1369.
https://doi.org/10.1145/2723372.2742790

[58] WonWook Song, Myeongjae Jeon, and Byung-Gon Chun. 2022. SWAN:
WAN-Aware Stream Processing on Geographically-Distributed Clus-
ters. In Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on
Systems (Virtual Event, Singapore) (APSys ’22). Association for Com-
puting Machinery, New York, NY, USA, 78–84. https://doi.org/10.
1145/3546591.3547524

[59] Won Wook Song, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, and
Byung-Gon Chun. 2023. Sponge: Fast Reactive Scaling for Stream Pro-
cessing with Serverless Frameworks. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). USENIX Association, Boston, MA, 301–
314. https://www.usenix.org/conference/atc23/presentation/song

[60] WonWook Song, Youngseok Yang, Jeongyoon Eo, Jangho Seo, Joo Yeon
Kim, Sanha Lee, Gyewon Lee, Taegeon Um, Haeyoon Cho, and Byung-
Gon Chun. 2021. Apache Nemo: A Framework for Optimizing Dis-
tributed Data Processing. ACM Trans. Comput. Syst. 38, 3–4, Article 5
(oct 2021), 31 pages. https://doi.org/10.1145/3468144

[61] Zhenyu Song, Daniel S. Berger, Kai Li, andWyatt Lloyd. 2020. Learning
Relaxed Belady for Content Distribution Network Caching. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 529–544. https:
//www.usenix.org/conference/nsdi20/presentation/song

[62] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.
2018. Driving Cache Replacement with ML-based LeCaR. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/vietri

[63] Bo Wang, Jie Tang, Rui Zhang, Wei Ding, and Deyu Qi. 2018. LCRC:
A Dependency-Aware Cache Management Policy for Spark. In 2018
IEEE Intl Conf on Parallel & Distributed Processing with Applications,

Ubiquitous Computing & Communications, Big Data & Cloud Comput-
ing, Social Computing & Networking, Sustainable Computing & Com-
munications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). 956–963.
https://doi.org/10.1109/BDCloud.2018.00140

[64] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons:
Dynamic GPU Memory Management for Training Deep Neural Net-
works. In Proceedings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (Vienna, Austria) (PPoPP ’18).
Association for Computing Machinery, New York, NY, USA, 41–53.
https://doi.org/10.1145/3178487.3178491

[65] Luna Xu, Min Li, Li Zhang, Ali R. Butt, YandongWang, and Zane Zhen-
hua Hu. 2016. MEMTUNE: Dynamic Memory Management for In-
Memory Data Analytic Platforms. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS). 383–392. https:
//doi.org/10.1109/IPDPS.2016.105

[66] Yinggen Xu, Liu Liu, and Zhijun Ding. 2020. DAG-Aware Joint Task
Scheduling and Cache Management in Spark Clusters. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
378–387. https://doi.org/10.1109/IPDPS47924.2020.00047

[67] Donglin Yang and Dazhao Cheng. 2020. Efficient GPU Memory Man-
agement for Nonlinear DNNs. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing
(Stockholm, Sweden) (HPDC ’20). Association for Computing Machin-
ery, New York, NY, USA, 185–196. https://doi.org/10.1145/3369583.
3392684

[68] Youngseok Yang, Jeongyoon Eo, Geon-Woo Kim, Joo Yeon Kim, Sanha
Lee, Jangho Seo,WonWook Song, and Byung-Gon Chun. 2019. Apache
Nemo: A Framework for Building Distributed Dataflow Optimization
Policies. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). USENIX Association, Renton, WA, 177–190. https://www.usenix.
org/conference/atc19/presentation/yang-youngseok

[69] Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee,
Andrew Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun.
2017. Pado: A Data Processing Engine for Harnessing Transient
Resources in Datacenters. In Proceedings of the Twelfth European
Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). As-
sociation for Computing Machinery, New York, NY, USA, 575–588.
https://doi.org/10.1145/3064176.3064181

[70] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. 2009.
Stochastic gradient boosted distributed decision trees. In Proceedings
of the 18th ACM conference on Information and knowledge management.
2061–2064.

[71] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System
for General-Purpose Distributed Data-Parallel Computing Using a
High-Level Language. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (San Diego, California)
(OSDI’08). USENIX Association, USA, 1–14.

[72] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. 2017. LRC:
Dependency-aware cache management for data analytics clusters. In
IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.
1–9. https://doi.org/10.1109/INFOCOM.2017.8057007

[73] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief. 2017.
LERC: Coordinated Cache Management for Data-Parallel Systems.
In GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
1–6. https://doi.org/10.1109/GLOCOM.2017.8254999

[74] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12). USENIX
Association, San Jose, CA, 15–28. https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/zaharia

16

https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3225058.3225087
https://doi.org/10.1145/3225058.3225087
https://doi.org/10.1109/MICRO.2006.49
https://doi.org/10.14778/3352063.3352082
https://doi.org/10.14778/3352063.3352082
https://doi.org/10.1145/2723372.2742790
https://doi.org/10.1145/3546591.3547524
https://doi.org/10.1145/3546591.3547524
https://www.usenix.org/conference/atc23/presentation/song
https://doi.org/10.1145/3468144
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://doi.org/10.1109/BDCloud.2018.00140
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1109/IPDPS.2016.105
https://doi.org/10.1109/IPDPS.2016.105
https://doi.org/10.1109/IPDPS47924.2020.00047
https://doi.org/10.1145/3369583.3392684
https://doi.org/10.1145/3369583.3392684
https://www.usenix.org/conference/atc19/presentation/yang-youngseok
https://www.usenix.org/conference/atc19/presentation/yang-youngseok
https://doi.org/10.1145/3064176.3064181
https://doi.org/10.1109/INFOCOM.2017.8057007
https://doi.org/10.1109/GLOCOM.2017.8254999
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

Blaze: Holistic Caching for Iterative Data Processing EuroSys ’24, April 22–25, 2024, Athens, Greece

[75] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, andMichael J. Freedman. 2017. Live Video Analyt-
ics at Scale with Approximation and Delay-Tolerance. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). USENIX Association, Boston, MA, 377–392. https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/zhang

[76] Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. 2020.
Echo: Compiler-Based GPU Memory Footprint Reduction for LSTM
RNN Training. In Proceedings of the ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (Virtual Event) (ISCA ’20).
IEEE Press, 1089–1102. https://doi.org/10.1109/ISCA45697.2020.00092

17

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://doi.org/10.1109/ISCA45697.2020.00092

	Abstract
	1 Introduction
	2 Background
	2.1 Dataflow Execution Model
	2.2 Parallel Execution and Partition Sizes
	2.3 Caching Iterative Workloads in Existing Systems

	3 Observation and Motivation
	3.1 Caching and Eviction Mechanisms
	3.2 Recomputation and Disk I/O Costs

	4 Considerations for Cost-aware Caching
	4.1 To Cache, or Not To Cache?
	4.2 To Evict, or Not To Evict?
	4.3 Dynamically Changing Data Dependency

	5 Blaze Design
	5.1 Blaze Overview
	5.2 Design Principles
	5.3 The CostLineage for Tracking Partition Metrics
	5.4 Potential Recovery Cost Estimation
	5.5 Finding the Optimal Partition States
	5.6 Automatic Caching

	6 Blaze Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Performance Analysis
	7.3 Performance Breakdown
	7.4 Number of Evictions and Recomputation Time
	7.5 Profiling Overhead vs. Benefits

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

