
Harmony: A Scheduling Framework Optimized for
Multiple Distributed Machine Learning Jobs

Woo-Yeon Lee1, Yunseong Lee2∗, Won Wook Song2, Youngseok Yang2, Joo Yeon Kim1, Byung-Gon Chun2,3†
1Samsung Research, 2Seoul National University, 3FriendliAI

{wooyeon.lee0, yunseong.lee0, wsong0512, johnyangk, jooykim00}@gmail.com, bgchun@snu.ac.kr

Abstract—We introduce Harmony, a new scheduling frame-
work that executes multiple Parameter-Server ML training
jobs together to improve cluster resource utilization. Harmony
coordinates a fine-grained execution of co-located jobs with com-
plementary resource usages to avoid contention and to efficiently
share resources between the jobs. To resolve the memory pressure
due to the increased number of simultaneous jobs, Harmony
uses a data spill/reload mechanism optimized for multiple jobs
with the iterative execution pattern. Our evaluation shows that
Harmony improves cluster resource utilization by up to 1.65×,
resulting in a reduction of the mean ML training job time by
about 53%, and makespan, the total time to process all given
jobs, by about 38%, compared to the traditional approaches
that allocate dedicated resources to each job.

I. INTRODUCTION

Machine learning (ML) training is one of the most popular
data processing workloads in datacenters today. Especially,
classical ML workloads are widely used in real-world produc-
tion services [1]–[3] and are typically trained in large-scale
shared CPU clusters [4]–[6].

Efficient resource scheduling among the ML jobs is key
to improving cluster-wide performance. Existing scheduling
systems for multiple ML jobs allocate a set of isolated
resource units (e.g., containers, machines) that are obtained
from resource managers, and a job exclusively runs on the
allocated resource units [4]–[8]. For distributed ML training,
the Parameter Server (PS) architecture is widely used in both
research and industrial communities [2], [4], [6]–[13]. On
the given set of resources, a PS-based job runs distributed
worker and server tasks, where workers iteratively compute
model gradients and synchronize progress by communicating
through servers. However, existing scheduling systems result
in an average utilization of around 50% of the assigned
resources [9], [14]–[16], as a training job sequentially executes
computation and communication steps, where each of step
intensively uses a particular type of resource while leaving
the others mostly idle.

In order to improve resource utilization, several works have
proposed asynchronous training methods that disintegrate the
sequential dependency of the computation and communication
steps [17]–[19]. In such works, workers synchronize model
parameters in the background while computing for gradients
during the computation steps, making both the CPU and the
network resources busy. However, breaking the sequential

∗Yunseong Lee is currently at Qualcomm Technologies Inc.
† Corresponding author

dependency often results in model inconsistency and com-
putations based on stale models, and hence hinders model
convergence [17], [20]–[22]. Although many works try to
minimize occurrence of stale models in asynchronous training
by constraining maximum staleness [18], [19], [23] or by dif-
ferentiating the learning rate of the delayed updates [24], they
have been able to reduce the side-effects but not completely
resolve the issue, occasionally showing worse performance for
complex models [21]. Due to such reasons, many works retain
synchronous training to avoid staleness [20]–[22], [25].

A possible approach to resolve the under-utilization problem
while keeping synchrony is to co-locate multiple jobs to share
a pool of resources so that computation and communication
can be interleaved. Nevertheless, naively co-locating jobs may
result in multiple jobs contending for using the same type of
resource simultaneously. This can result in an even slower job
completion time than running each job alone (§V). In addition,
ML training is memory-intensive [26], [27] and co-locating
multiple jobs incurs even higher memory pressure, which
results in job failures caused by out-of-memory errors, or
slowdowns caused by garbage collection overheads, especially
in managed runtimes like Java Virtual Machine environments.

To resolve these challenges, we introduce Harmony, a
scheduling framework that co-locates and optimizes resource
utilization among multiple ML training jobs, reducing the av-
erage job completion time (JCT) and makespan, the total time
to complete all given jobs. Harmony exploits the pattern of ML
job tasks that iteratively use different types of resources in each
of their steps, to minimize resource contention. Specifically,
Harmony first decomposes each job into fine-grained subtasks,
each of which dominantly uses a single type of resource (e.g.,
network-subtasks, CPU-subtasks), then schedules the subtasks
of co-located jobs in a pipelined manner, so that each subtask
can fully utilize each type of resource without contending with
the other subtasks in execution.

Moreover, as the performance of co-located jobs varies
upon the set of jobs co-located and the number of machines
allocated for the jobs, Harmony models the performance of
co-located jobs with profiled metrics and runs a schedul-
ing algorithm to make a decision towards higher resource
utilization. As the pool of jobs changes with job arrivals
and completions, Harmony dynamically reschedules jobs and
resources to continuously find more efficient job groupings
and resource allocation. To minimize overhead of continuous
regroupings, we design our scheduling algorithm to minimize

841

2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)

2575-8411/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDCS51616.2021.00085

20
21

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 D

ist
rib

ut
ed

 C
om

pu
tin

g
Sy

st
em

s (
IC

DC
S)

 |
 9

78
-1

-6
65

4-
45

13
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DC

S5
16

16
.2

02
1.

00
08

5

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

job movements and design our system to migrate jobs effi-
ciently for multi-job situation.

Furthermore, under the higher memory pressure caused by
the increased number of simultaneous jobs, Harmony prevents
out-of-memory errors and garbage collection overheads with a
data spill/reload mechanism optimized for multiple jobs with
iterative execution patterns. Specifically, Harmony spills data
that is not in active use to disk to relieve memory pressure.
Since reloading data from disk is slow and has non-trivial
overheads, we dynamically change the ratio of disk-side and
memory-side data to balance overheads from memory pressure
and disk read.

Our evaluation on 100 m4.2xlarge AWS EC2 instances
shows that Harmony improves cluster resource utilization by
up to 1.65× compared to traditional approaches that maintain
dedicated allocation of resources. The increased resource
utilization reduces average job training time by up to 53%,
and makespan by up to 38%.

The rest of the paper is organized as follows: §II covers
the background knowledge about the problem that we aim to
solve, §III illustrates the overview of Harmony, §IV describes
how Harmony divides jobs into subtasks and enables multi-
plexing of multiple jobs while mitigating memory pressures,
§IV-B elaborates on how Harmony profiles and models jobs
to predict and appropriately group jobs to co-locate on the
provided nodes, §V presents the evaluation results and the
comparison between Harmony and the baselines that represent
existing systems, §VI discusses the limitations of Harmony
and the future works, §VII covers related works, and §VIII
concludes.

II. BACKGROUND AND MOTIVATION

In this section, we first describe the parameter server (PS)
architecture, a common framework designed for running large-
scale distributed ML jobs, and how ML training jobs are
scheduled to resources, to point out the inefficiency caused
by idle resources in each execution step of existing PS-based
systems. Then, we describe co-location of multiple jobs as
a possible solution for the under-utilization of resources, and
point out the challenges that arise with the approach.

A. Machine Learning in Parameter Servers

To facilitate large-scale ML training in distributed environ-
ments, systems designed with the PS architecture have been
introduced [10]. The PS architecture mainly consists of servers
that each maintains a partition of ML model parameters, and
workers that perform iterations of ML computations (e.g.,
deriving gradients) from each partition of input data. Work-
ers synchronize with each other by communicating through
servers via the push/pull APIs provided by the PS system. To
highly utilize both CPU and network resources and to reduce
the network overheads, workers and servers are usually located
together [11], [12].

Figure 1 illustrates how a worker task performs in a training
job. In a PS job, each iteration, or mini-batch processes a
part of the input dataset, which altogether forms an epoch,

Servers

Worker
PULL COMP PUSH

model

params
gradients

time

…Mini-batch

Epoch

b
a
r
r
ie
r

Fig. 1: The work-flow of a PS system. A worker w repeatedly
performs mini-batches, each composed of three steps (PULL-COMP-
PUSH). Multiple mini-batches compose an epoch, which runs with
the entire set of local input data.

16K 8K PubMed NYTimes
0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Config. Hyper-param (# class) Dataset
App. MLR LDA

CPU
Network

Fig. 2: ML training in PS fails to achieve high resource utilization,
while showing different resource usage ratios with various workloads.

which describes a full scan of the training dataset. When an
iteration begins, each worker first pulls the current model from
servers (PULL), computes model gradients from the model and
the assigned partition of input data (COMP), and pushes the
gradients to servers to update the model (PUSH). The PS job
repeats the process until sufficient epochs have been executed
for the convergence of the model.

In an iteration, each step intensively uses a specific type
of resource, while leaving the others mostly idle, resulting
in an under-utilization of resources. In the COMP step, CPU
and memory resources are intensively used, while network
resources are heavily utilized in the PUSH and PULL steps.
Figure 2 shows how CPU and network resources are un-
derutilized while running different ML applications. In the
experiment, we use multinomial logistic regression (MLR)
and latent Dirichlet allocation (LDA) as workloads, which are
widely used for classification and topic modeling. We run the
experiment 10 times on 16 AWS m4.2xlarge EC2 instances
using our PS system, which has comparable performance to an
open-source PS system referenced in §V. In both applications,
we can observe that the overall utilization rates stay rather
indifferent, but also that the ratios of CPU and network
utilization vary greatly.

Next, Figure 3 illustrates how the resource utilization
changes with the number of machines allocated to the job.
More number of machines naturally means that we could use
higher degree of parallelism (DoP) using more CPU cores
across multiple machines, leading to a shorter completion
time, but also that the communication cost increases with
more machines, leading to lower CPU resource utilization.
On the other hand, less machines lead to less communication
and thus higher utilization of CPU resources. Nevertheless, it

842

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

4 8 16 32
The number of machines

0

20

40

60

80

100
Ut
iliz
at
io
n
(%
)

CPU Network

(a) Resource Utilization.

4 8 16 32
The number of machines

0

20

40

60

Ti
m

e
(s

ec
)

Iteration time
PULL

PUSH
COMP

(b) Job Completion Time.

Fig. 3: Running a job with different number of machines.

wastes network resources, which could be used to increase
the parallelism of a job to shorten its execution time. In
short, although increasing the number of machines results
in better execution time and can adjust the ratio of CPU
and network resource utilization rates, the resource under-
utilization problem still remains as a challenge.

B. Co-location of Multiple Machine Learning Jobs

A possible approach in solving the inefficiency caused by
idle resources of the different steps is to run multiple tasks of
different jobs simultaneously. As the tasks that use different
types of resources can run at the same time, we can expect
the different types of resources to be utilized more intensively.
Nevertheless, naively putting different jobs together does not
solve the problem.

In Figure 4, we empirically show how co-located PS jobs
may still lead to resource under-utilization. In addition to the
MLR application used in Figure 2, we use non-negative matrix
factorization (NMF) and lasso regression (Lasso) workloads,
which are widely used for recommendation and regression
problems, respectively. We compare the results when applica-
tions run on their own, and also when they run while they are
co-located with others. When run on its own, each application
shows varying levels of CPU and network resource utilization
rates depending on the workload, as shown in the left half
of Figure 4. Nevertheless, the overall utilization rates do not
improve much even when co-located with other workloads,
as shown in the right half of Figure 4. Co-location of two
jobs in the example (e.g., NMF+Lasso, NMF+MLR) does not
result in high utilization of both resources, but averages out the
utilization for both of them to around 50%. Also, the standard
error bars for co-location are much larger compared to when
running each job on their own, which indicates that resource
utilizations are more unpredictable. Co-locating all three jobs
results in an out-of-memory error, as the sum of their memory
use exceeds the amount of the total available memory. This
indicates that higher utilization rates cannot be achieved by
simply increasing the number of concurrent jobs.

As it can be seen from the observations, the resource under-
utilization problem cannot be easily addressed with a black
box approach, where jobs are naively co-located without being
aware of the potential problems of the co-location. First,
the root cause of under-utilization comes from the resource

NMF Lasso MLR NMF+
Lasso

NMF+
MLR

NMF+MLR+
Lasso

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Ou
t o

f M
em

or
y

(O
OM

)

Single job Co-located jobs

CPU
Network

Fig. 4: Co-locating multiple PS jobs still fails to achieve high resource
utilization rates.

 A

 A

 A

 B

 B

CPU

Network

 A

A A

 B

B B

CPU

Network

A B

 B

(a) Naive co-locating approach

(b) Multiplexing approach

Speedup

Contention

 A

 B

Fig. 5: Comparison of job scheduling approaches. The figure illus-
trates only two iterations of jobs for simplicity.

contentions that occur between the naively co-located jobs, as
the tasks of different jobs that use the same type of resources
compete with each other for the specific resource, as illustrated
in Figure 5a. Such resource contention results in a lagged
and unpredictable completion of each step of the job, and
leaves big portions of resources idle. Second, the perfor-
mance of co-located jobs is heavily dependent on the type of
the co-located jobs. When grouping jobs together, one must
carefully consider the characteristics and the complementary
effects of their co-location, as otherwise it would lead to an
imbalanced utilization of resources or even higher resource
contention problems. Third, memory pressure from co-located
ML jobs may result in job slowdown by GC overheads or
job failures by OOM error. For performance reason, input
data is often maintained in workers’ memory because during
training iterations workers repeatedly access the input data.
Also model data is maintained in servers’ memory to respond
immediately for arbitrary accesses from workers. In addition,
each training step consumes additional memory resources to
generate intermediate results.

Therefore, in order to achieve higher resource utilizations, it
is crucial to combine and execute tasks in a coordinated way,
with the knowledge about resource use of each of the different
task steps of different jobs. In the following section, we
describe our solution to resolve these challenges and achieve
efficient utilization of resources for co-location of PS ML jobs.

III. HARMONY OVERVIEW

We introduce Harmony, a new scheduling framework that
embodies our approach, which co-locates jobs with comple-

843

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

Input
data

Disk

SubTasks

E E

D DD

E

A B C D E

Group0 Group1

jobs machines

Master Worker

Fig. 6: Harmony scheduling overview. The master schedules jobs by
grouping them and allocating resources, determined by the runtime
metrics from workers. Workers schedule and execute subtasks, while
dynamically reloading input data from disks in the background.

mentary resource use with each other and multiplexes their
tasks to harmoniously share resources. To enable this, we
provide three key techniques. First, we execute and control
jobs with fine-grained scheduling unit called subtasks, each
of which uses a specific type of resources as illustrated
in Figure 5b. With subtasks, we can prevent the resource
contention (e.g., CPU, network) with fine-grained management
of the resource usage pattern during the execution co-located
jobs.

Second, we co-locate jobs with complementary resource
usage patterns to maximize the effect of job multiplexing.
To solve this scheduling problem, we first model the perfor-
mance of co-located jobs with the metrics collected during
runtime. The subtask-based execution makes the performance
predictable, and enables performance modeling. Based on the
performance model, we devise a scalable scheduling algorithm
that chooses the option for higher resource utilization, as
well as for shorter execution times. In addition, to deal
with the changing pool of jobs, we design a system and
a scheduling algorithm to dynamically regroup jobs and to
reallocate resources to them.

Lastly, we only maintain the input data of the subtasks in
action in memory, while spilling the input data of other jobs
on disk. This way, Harmony successfully relieves the memory
pressure, by letting the jobs use memory resource in turns.
However, as putting too much data on disk may lead to an
increased latency for data loading due to a shortage of disk
bandwidth, we dynamically balance the amount of input data
in memory and disk. Also, we support similar mechanisms
for the model data when the input data spill is not enough for
mitigating the memory pressure.

Harmony provides a runtime to execute jobs, consisting of
a master, with multiple servers and workers, as depicted in
Figure 6. The master serves as a center for collecting metrics,
grouping jobs into job groups, and scheduling them across
available machines. Once a job is submitted, its worker and
server code with its arguments are sent to the master, and the
job is enqueued to the job queue with a waiting state. When
the job is picked up, it gets naively assigned to a group and
executed on the group’s set of machines to be profiled. The
master triggers the appropriate workers to load the input data,
and servers to initialize their model parameters. Once they are
set up, the master distributes its subtasks across workers, and
the job enters the profiling state and the profiled and

RunnerQueue

SubTask Executor

A

C C

B

C

C

SubTasks

SubTask

Synchronizer

(3)

(4)
A

COMM COMP thread

(1)
CB

Network
RunnerQueue

B B

A A

Master Worker

(2)

CPU

Fig. 7: Scheduling and execution of jobs A, B, and C, where A is
at the COMP subtask, and B and C are at the COMM subtask.

running state afterwards.
Workers continuously collect runtime metrics during the

execution to keep the master and job scheduler updated with
the profiled metrics. Based on the profiled metrics, the job is
assigned to a job group by the job scheduler, through the job
scheduling algorithm described in §IV-B, and gets paused or
migrated to the machine allocated for the optimized job group,
with techniques that minimize the overhead on the progress
of the jobs in execution. In the end, jobs are grouped into
appropriate job groups, and each job group gets executed on
the allocated machines until the convergence of the model
(finished).

IV. MULTIPLEXING ML JOBS

In this section, we first describe how Harmony executes
multiple tasks in each worker with minimal contention using
subtasks. We then describe scheduling for grouping jobs
with complementary resource usage patterns, built upon the
subtask-based execution model. Lastly, we describe our dy-
namic data reloading technique for relieving memory pressure
caused by the multiple co-located jobs.

A. Fine-grained Execution with Subtasks

To minimize the resource contention between jobs, we
decompose long-running worker tasks into smaller subtasks,
each of which uses a single dominant type of a resource.
In our context, COMP subtasks use CPU resources while
PULL and PUSH subtasks use network resources. For the ease
of representation, we call the network-intensive PULL and
PUSH subtasks as COMM subtasks. The COMP and COMM
subtasks from multiple different jobs can be coordinated so
that only a single subtask can run at a time for a specific type
of resources and the subtasks that require different types of
resources simultaneously run together, utilizing the available
resources.

Figure 7 illustrates how subtasks are scheduled and executed
in a pipelined manner on Harmony. On the left, the subtask
synchronizer in the master manages the state of the distributed
job subtasks across multiple workers, to synchronize the
overall progress of the job. On the right, in the worker, the
subtasks get enqueued to the CPU or the network queue
respectively, by the threads that run the subtasks for each
job. The subtask executors of the workers run the queued
subtasks in the provided order. In a subtask executor, a single
CPU subtask is executed at a time as a single CPU subtask

844

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

usually uses almost all of the provided CPU resources. On
the other hand, as network subtasks often show asynchronous
behaviors and cause idle network resources during the time
that it takes for the servers to handle the pull/push requests, a
single network subtask may not fully utilize the given network
resources. To solve this, we schedule a secondary network
subtask, while yielding the network resources to the primary
network subtask whenever a contention occurs.

Subtask scheduling and execution are illustrated by an
example shown in Figure 7(1-4). In the example, when a single
COMM subtask of job C completes its execution (1), the
SubTask Synchronizer checks the completeness of the other
COMM subtasks of the other workers to synchronize the
progress of the job (2). Then, when all distributed COMM
subtasks of job C are complete, the COMP subtask of C
is enqueued to the CPU queue (3-4), to be executed after
the COMP subtask of A, which is already in execution. The
executions of the subtasks occur in a similar manner for all
other types of subtasks for each of the jobs.

Harmony does not require users to write their code with
subtasks. Decomposing a worker task into subtasks can be
done internally by the system, because model synchronization
step is done by explicitly calling PS push/pull interfaces.
Harmony naturally treats PS push/pull methods as COMM
subtasks and the remainder parts of worker task as COMP
subtasks. For better separation of resource use, we modify
push/pull methods to minimize its CPU consumptions by
performing data (de)serialization outside of COMM subtask.

In the following section, we describe higher-level schedul-
ing problem of determining which jobs to co-locate and how
many number of machines to allocate to co-located jobs.

B. Dynamic Grouping of Jobs

Although now we have the techniques to run multiple co-
located ML jobs without contention, the performance varies
greatly based on which jobs are co-located together. Thus, it is
crucial to co-locate jobs with complementary resource usages
together.

Harmony divides jobs into groups, where each group means
a set of jobs to be co-located, and allocates a set of machine
resources to each group. We call the group of co-located
jobs as a job group, and a full iteration of the job group
as a group iteration. A job group should have the balanced
use of resources and the allocated resources should be kept
busy during group iterations. To achieve this goal, Harmony
makes a scheduling decision using runtime metrics and the
performance model.

In this section, we describe how Harmony collects runtime
metrics (§IV-B1) and models performance of co-located jobs
based on the collected metrics (§IV-B2), and finally schedules
jobs and machine resources (§IV-B3) and performs regrouping
during runtime (§IV-B4).

1) Profiling: Fine-grained subtasks enable us to manage
iterative ML jobs to run with smaller resource contention
between their tasks, which makes it much easier to predict the
performance of future iterations. ML jobs on Harmony show

A

A

B

B

C

C

A B C

A B C

A BCPU

Network

(a) Resource-bound case (network-bound case): Sum of network-subtasks is
longer than CPU-subtasks, leaving CPU resources idle.

A

A

B

B

C

C

A B C

B C

A BCPU

Network A

(b) Job-bound case: Job B is too large compared to the other jobs. Both CPU
and network resources are left idle.

Fig. 8: Problematic cases of unbalanced co-located jobs. Subtasks
with bold lines incur under-utilization of resources. Red hatched
boxes represent idle resources.

stable performance with reduced resource contention and thus
the profiled metrics of subtasks can be meaningfully reused,
while being updated using moving averages.

Harmony monitors each job j in each group g and collects
runtime metrics which consists of the average execution times
of CPU and Network subtasks and the number of machines
allocated to the group (Tcpuj

, Tnetj ,mg). The scheduler pro-
files the job in background, deploying to a job group with
the smallest number of machines or a job group that is
already profiling an another new job, to minimize the potential
degradation of resource utilization.

2) Performance Modeling: When predicting group iteration
time using the collected metrics, Harmony considers several
cases of non-uniform resource use of jobs. Figure 8 shows
two cases where naive subtask scheduling can be problematic.
First, Figure 8a presents a resource-bound case, in which jobs
in a job group are bounded by a certain type of resources due
to imbalanced resource use, leaving the other type of resources
idle. Second, Figure 8b shows a job-bound case, where a
certain job has a much longer job iteration time compared
to other jobs.

From the observations, we derive the equation for group
iteration time Tg itrg , which is the time for all jobs j of a
group g to finish an iteration, with three terms: the maximum
of job iteration times for the job-bound case, and the sum of
COMP or COMM subtask times of the grouped jobs for the
resource-bound case, as follows:

Tg itrg = max
(∑

j∈g
Tcpuj

,
∑
j∈g

Tnetj ,max
j∈g

Tj itrj

)
(1)

The time for a COMP subtask Tcpuj can be controlled by
increasing the degree of parallelism (DoP), since each COMP
subtask processes a smaller portion of input data with higher
DoP, while COMM subtasks using network resources remain
rather indifferent. Thus, Tcpuj

of a job j can be expressed with
respect to the group DoP mg of the job group g as follows:

Tcpuj
∝ 1

mg
(j ∈ g) (2)

845

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

This implies that manipulating the group DoP mg of the
job group may have an effect on Tg itrg according to Eq.1.

The utilization of CPU and network resources can be
expressed as the percentage of the time spent by the subtasks
for each type of resource, out of the group iteration time
derived above (Tg itrg). The utilization rates of CPU and
network can be thus expressed as a two-dimensional vector
as follows:

U(g) =
[
Ucpug

Unetg

]
=

[∑
j∈g

Tcpuj

Tg itrg

∑
j∈g

Tnetj

Tg itrg

]
(3)

If the job group is CPU-bound, then the CPU utilization
rate becomes 1, and the same can be inferred for the network.
In the job-bound case, the denominator (Tg itrg) is larger than
both the sum of CPU subtasks and network subtasks in the
job group, leaving both type of resources partially idle.

We define the resource utilization of an entire cluster U as
the weighted average of the utilization rates of all job groups,
where G is the set of job groups:

U =
[
Ucpu Unet

]
=

∑
g∈G

(mg × U(g))∑
g∈G

mg
(4)

Harmony constantly seeks for higher resource utilization U ,
and when it detects a potential improvement, it dynamically
updates the jobs, job groups, and the allocated machines to
increase efficiency.

There are a few other things that we consider with our
performance model. First, we prefer fitting a smaller number
of jobs in a job group for shorter JCTs and lower mem-
ory pressure. Second, CPU utilization rates are treated more
importantly than the network utilization in our model, since
CPU resources directly contribute to the job progress, whereas
network resources is for communication.

3) Grouping Jobs and Allocating Machines: Based on the
model, Harmony makes a scheduling decision that groups
jobs and allocates machines to each job group. However,
the scheduling problem is too complex with exponential
time complexity and further Harmony requires the continuous
scheduling corresponding to the changing pool of jobs. To
be practical, we use heuristics that roughly determine initial
values and do fine-tuning, which we show the scalability in
§V-F.

Our scheduling algorithm (Algorithm 1) observes all jobs
that are profiled and in the state of running, paused, or
profiled (L2). While incrementing the number of jobs
to consider, starting from a single job, Harmony tries to
find the set of job groups G with better resource utiliza-
tion, considering how to group them together and how to
allocate resources to them (L4-13). Harmony first determines
the number of groups n∗G, which determines the DoP that
balances the CPU and network usage of the jobs the most,
assuming that all groups have an equal number of machines
and thus the same DoP for all of the jobs (L6). Here, since

Algorithm 1: Job scheduling algorithm.
input : Jprofiled: list of profiled jobs,

Jpaused: list of paused jobs,
Jrunning: list of running jobs,
M : set of machines

output: G: grouping that maximizes utilization.
1 Function schedule(Jprofiled, Jpaused, Jrunning , M):
2 Jto sched ← Jprofiled ∪ Jpaused ∪ Jrunning

3 Umax ← 0
4 for nj ← 2 to |Jto sched| do
5 Jto group ← Jto sched[0 : nj − 1]
6 nG

∗ ← argmin
nG

∑
j∈Jto group

|Tcpuj (nG)− Tnetj |

7 GJ ← assignJobs(Jto group, n
∗
G)

8 GM ← allocateMachines(GJ ,M, n∗G)
9 G← (GJ , GM)

10 if U(G) > Umax then
11 Umax ← U(G)

12 else
13 break

14 return G

we assume that the DoP is equal among the job groups,
mg ∝ 1

nG
and thus Tcpu ∝ nG (∵ Eq.2). Then, with the

number of job groups decided, Harmony performs a grouping
algorithm (L7), and allocates machines to the job groups
(L8). With this information, Harmony computes the potential
resource utilization U(G), and continues with the loop if it
sees potential improvement in the overall utilization (L10).
Once it sees no more improvement with the increasing set of
jobs, Harmony stops and runs the jobs with the optimized set
of job groups (L12-14).

The grouping algorithm (L7) assigns jobs J evenly into a
given number of groups n∗G. In order to prevent job-bound
cases, we place jobs with similar iteration times together as
much as possible. For example, if large jobs are spread around
each of the job groups, it would result in a longer average
group iteration time, so we try to keep the large ones together.
In order to do this, the scheduler first sorts jobs by their job
iteration time Tj itrj . The scheduler then fills job groups one
by one with jobs from the sorted list in a greedy manner
to balance resource use. Lastly, the algorithm fine-tunes the
result by swapping jobs between the groups. It first picks the
most imbalanced group, and finds the group that has the most
complementary resource use. Then, it finds the tuple of jobs
from each of the groups that would minimize the “resource-
imbalance” for both of the groups, and swaps the two jobs
between the groups. The fine-tuning repeats until there are no
possible swap cases.

After the job assignment, we distribute the machines to the
job groups (L8) to balance the computation and communi-
cation in each job group. First, the algorithm allocates one
machine for every job group. The algorithm then repeats a
step of allocating one machine to a group that needs additional
machines the most. Those groups that need machines are the
most computation-intensive ones, as having more machines
would reduce the computation cost in an iteration (∵ Eq.2),
reducing the CPU-bound cases (Eq.1).

846

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

4) Dynamic Job Regrouping: When (1) a new job is
submitted or (2) a job completes execution, scheduling has to
be triggered, in order to look for the set of job groups that best
fit the newly updated set of jobs. Since regrouping may cause
extra overhead, we minimize the number of jobs participating
in regrouping using the following regrouping algorithm. (1)
When a new job arrives, the scheduler first performs profiling
as described in §IV-B1. After profiling, the scheduler handles
the job only when there is no other profiled/paused jobs,
because existence of those jobs means that Harmony already
satisfies with the currently running jobs. The scheduler
handles the job by adding it to a proper group that maximizes
U or let it wait if it does not improve U . (2) When one of
existing jobs finishes, Harmony needs to repair a group of the
finished job to be computation-communication balanced again.
The scheduler searches for a similar job in terms of iteration
time and comp/comm ratio among profiled/paused jobs
to replace the finished job. When failing to find a similar job,
the scheduler searches for a bunch of jobs with equivalent
characteristics, whose the sum of iteration times and the ratio
of respective sum of computation and communication times
are similar to the finished job. We judge that jobs are similar
when the difference of statistics is within 5%, which is an
acceptable error as we shown in §V-E. If the scheduler fails
to replace the finished job with profiled/paused jobs, the
scheduler involves other job groups in regrouping, using the
main scheduling algorithm (Algorithm 1). The scheduler calls
schedule function altering Jrunning with jobs in selected
job groups. At first, the scheduler selects a group with the
smallest number of jobs in addition to the group that the
finished job belonged to. Then it changes the job group or adds
more job groups, in the way of incrementally increasing the
number of jobs that participate in regrouping. After finishing
all possible combinations of job groups, it compares their
predicted performance and selects the grouping decision with
smaller number of jobs, if the performance improvement of
decisions with more number of jobs is less than 5% compared
to the decision with smaller number of job groups. In the
same context, Harmony does not perform regrouping when
the expected benefit is less than 5% of U .

To apply the new grouping decision by the scheduler, Har-
mony migrates running jobs between job groups and machines,
also enabling reallocation of machines between the groups.
During the migration of a job, the master simply pauses the
job and executes the other co-located jobs in the meanwhile,
keeping the resources busy. Harmony migrates only the stateful
model parameters, which are trickier to handle, and simply
reloads the immutable input data. In the case of the local
states of subtasks (e.g., pulled model parameters, computed
gradients), we simply perform the migration at the end of the
iteration (i.e., after PUSH subtask). When temporarily pausing
a running job during runtime, Harmony waits until ongoing
iteration ends, stops the subtasks of the job, and checkpoints
the model parameters on disk. Whenever it decides to resume
the job, Harmony reloads the input data, restores the model pa-
rameters from the checkpoint data, and runs the corresponding

subtasks on workers.

C. Dynamic Data Reloading

As Harmony runs multiple jobs simultaneously, higher
memory pressure is inevitable due to the increased number
of concurrent jobs. In a managed runtime, such as Java and
C#, using a large amount of memory often causes unwanted
garbage collection (GC) overheads.

In order to solve this problem, Harmony dynamically spills
and reloads input data to/from disks. Within subtask execution
model, we can put down the most of input data to disk,
because only a single COMP subtask runs at a time even if
there exist multiple co-located jobs. Though data reloading can
save much memory resources, we need to meet the following
requirements not to hinder performance. First, data should
be preloaded so as to not block task progress. Second, the
total amount of data to reload should be minimized, since it
requires additional overheads (e.g., deserialization). To resolve
the problem, we designate a portion of data to be in disk and
perform spill/reload only for disk-side data, instead of all data.
While processing data in memory, we can reload disk-side data
in background.

To facilitate the overall management of data, Harmony
manages data as fine-grained blocks in memory and on disks.
We express the ratio of job j as αj=

Bdiskj

Btotalj
, where Bdiskj

and
Btotalj represent the number of input data blocks of job j on
disk and in total, respectively. During runtime, Harmony keeps
adjusting the block ratio to find its optimal value. Increasing
αj makes more amount of data to be spilled and reloaded,
which brings additional overhead (e.g., deserialization). We
aim to use as least number of disk-blocks Bdiskj

as possible,
while preventing memory pressures and GC overheads. We use
hill-climbing method to incrementally move αj to an optimal
value. We determine the initial value by estimating the memory
use for accomodating input data and model data. We calculate
the size of input and model data by sampling.

V. EVALUATION

We have implemented Harmony with 8.8K lines of Java
code. We have built Harmony on top of Apache REEF [28]
that provides common functionalities for writing distributed
systems. In this section we evaluate the performance of
Harmony including its scheduling algorithm.

A. Baselines

Throughout the experimental results, we provide the follow-
ing two performance baselines for Harmony:

Isolated: The isolated baseline allocates disjoint sets of
resources for each distinct job. In the isolated approach, we
try to maximize the CPU utilization rates, as it determines the
actual training progress of each job, by reducing the network
overheads that occur with lower DoP. Existing works that take
similar approaches for allocating resources to each job include
Optimus [4] and SLAQ [5].

Naively co-located: The naively co-located baseline naively
shares resources between the co-located jobs. In this setting,

847

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

Apps Domain Dataset Input
(in GBs)

Model
(in GBs)

Non-negative Matrix
Factorization (NMF)

Recomm-
endation

Netflix64x [29] 45.6 1.0
Netflix128x 91.2 5.0

Latent Dirichlet
Allocation (LDA)

Topic
modeling

PubMed [30] 4.3 2.1
NyTimes [30] 0.6 1.1

Multinomial Logistic
Regression (MLR)

Classi-
fication Synthetic [31] 78.4,

155.0
12.0,
24.0Lasso Regression

TABLE I: Workloads used for evaluation. In MLR and Lasso, we
use a script for generating synthetic datasets included in Bösen.

0 5 10 15 20
Iteration time (minutes)

0
10
20
30
40
50
60
70
80

Ac
cu

m
ul
at
ed

 n
um

be
r o

f j
ob

s

(a) Iteration time.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of computation time
0

10
20
30
40
50
60
70
80

Ac
cu

m
ul
at
ed

 n
um

be
r o

f j
ob

s

(b) Comp time / iteration time.

Fig. 9: Key characteristics of workload used for evaluation. We use
DoP 16 for all experiments in this figure.

the different combinations of jobs and the different allocations
of resources cause greater variance in the performance com-
pared to the isolated baseline. We run all possible cases, and
report the best and the worst case. This baseline represents
the approach introduced in Gandiva [16], which has no fine
coordination between co-located jobs and an analytical basis
for job grouping. In our baseline, the minor optimizations in
Gandiva for finding better match of jobs are neglected, as we
present the best choice obtained from the exhaustive search.

As the baseline systems mentioned above are not open-
sourced at the time of submission of the paper, we implement
their scheduling schemes on Harmony.

B. Experimental Setup

We run experiments on 100 m4.2xlarge EC2 instances, each
with 8 vCPU cores, 32 GB memory and 1.1 Gbps network.
On each instance, we co-locate a server and a worker, and one
extra instance is used as the master.

As specified in Table I, we use 4 applications each with
2 datasets and 10 different hyper-parameters, resulting the
80 different (app, dataset, hyper-params) tuples. Figure 9
illustrates the distribution of workload characteristics such as
the iteration time and the computation to communication ratio.

We run each job until the model convergence. We monitor
the objective value (e.g., log-likelihood for LDA, and L2-loss
for NMF/MLR/Lasso) at the end of every epoch and determine
the convergence by comparing the objective value with the
pre-defined threshold. The average CPU and network utiliza-
tion are measured with an 1-minute interval. For memory
resources, we report the GC time during execution, which
represents to which extent Harmony relieves the increased
memory pressure caused by co-located jobs.

At the baseline of a single job execution in isolation, we
confirm that the PS implementation and the machine learning
algorithms used in Harmony show similar performances with
Bösen [31], an open-source PS system, with its staleness pa-
rameter set to 0 for synchronous training. With this condition

JCT Makespan0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
sp

ee
du

p 2.11

1.60

1.11

0.84
1.09
0.87

Isolated Naively co-located Harmony

Fig. 10: JCT and makespan in Harmony and the baseline approaches.
For naively co-located approach, the bar means average value and the
error bar represents max/min values.

0 600 1200 1800
Time (min)

0

25

50

75

100

CP
U
Ut
il.
 (%

)

0 600 1200 1800
Time (min)

0

25

50

75

100

Ne
t.
Ut
il.
 (%

)

Isolated Harmony

Fig. 11: Resource utilization of Harmony and isolated-approach
during an experiment that runs 80 jobs. The vertical lines represent
the completion time for all jobs (i.e., makespan).

set, we compare the performances of the scheduling methods
in our main evaluations.

C. Performance Comparison

In this section, we compare the performance of Harmony
with the other baseline approaches in terms of makespan and
average job completion times (JCTs). Concretely, makespan
is the time to complete all 80 jobs from the start of the first
job, whereas JCT of a job is the elapsed time between the
submission and the termination of the particular job.

We show the results in Figure 10, where the makespan and
JCT are normalized by the baseline isolated approach. First,
naively co-located approach is 11% and 9% faster in JCT and
makespan, respectively, due to the reduced idle time from the
co-location of jobs. However, the improvement is limited, as
jobs contend with each other for the resources. In the worst
case, it is even slower than the isolated approach.

Lastly, Harmony achieves a 2.11× speedup in terms of JCT
and 1.60× in makespan with higher utilization of resources,
where the regrouping overhead is below 2% of the overall
makespan. Figure 11 shows that Harmony shows higher re-
source utilization and less fluctuating utilization patterns. Har-
mony achieves average utilization of 93.2% CPU and 83.1%
network resources, which is 1.65× higher than the isolated
approach. Note that our scheduling can achieve higher network
utilizations with further optimizations in the communication
layer (e.g., minimizing the serialization overhead). Both the
CPU and network utilizations decrease near the end of the
execution with smaller number of jobs to co-locate, after
the termination of earlier jobs. Note that during an entire
execution, 27.2 concurrent jobs were running together on

848

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30
Group DoP

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul
at
iv
e
di
st
rib

ut
io
n

Base Comp-intensive Comm-intensive

0 2 4 6 8 10
The number of jobs in a group
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
di
st
rib

ut
io
n

Fig. 12: Distribution of group DoPs and the number of jobs in a
group. We extract the information from grouping decisions of the
scheduler during whole execution.

average, while divided into 6.7 job groups across all 100
machines.

We investigate how the individual techniques of Harmony
contribute to the overall performance benefit. We compare
the performance by gradually adding the different techniques
on top of each other. With only subtasks (§IV-A), we
achieve 32% of total benefit, and adding grouping techniques
(§IV-B) achieves 81%, and adding dynamic reloading tech-
nique (§IV-C) completes our solution.

D. Workload Sensitivity Analysis

To show that Harmony can work well with diverse work-
load, we run two experiments with varying resource usage
ratios of jobs and job arrival rates, respectively.

Workloads with different resource usage ratios: We use
two different sets chosen from the base workload with 80
jobs. The top and bottom 60 jobs are chosen based on the
ratio of computation to communication time (Figure 9b). As
a result, the two set of jobs are relatively computation-heavy
and communication-heavy compared to the base workload.

The computation-intensive workload runs faster with 1.58×
improvement in makespan with 90.5% CPU and 82.1%
network utilization in average. The communication-intensive
workload also shows 1.57× makespan speedup with 91.8%
CPU and 80.9% network utilization in average. From the
results, we can see that Harmony successfully achieves high
resource utilization regardless of the workload characteristics.
It is because Harmony can dynamically determine the average
DoP and the entry of running jobs to balance out the compu-
tation and communication of running jobs in each group.

The difference comes from the improvement of the aver-
age JCT. The computation-intensive workload shows 2.31×
speedup of average JCT, but the communication-intensive
workload shows 1.83× speedup. We found that the reason is
that Harmony uses different DoPs and the number of concur-
rently running jobs depending on the characteristics. Harmony
uses larger DoPs for the computation-intensive workload and
smaller DoPs for communication-intensive workload as illus-
trated in the left graph of Figure 12. Larger DoPs mean smaller
number of job groups and subsequently the smaller number
of concurrently running jobs. The number of jobs in a group
stay rather indifferent to the varying workload characteristics
as illustrated in the right graph of Figure 12.

0 5 10 15 20
Prediction error of U (%)

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
sp
ee

du
p Avg. JCT

Makespan

(a) Error sensitivity.

Cluster resource
 utilization (U)

Group iteration
 time (Tg_itr)

0
1
2
3
4
5

Pr
ed

ict
io
n
er
ro
r(%

)

(b) Prediction error.

Fig. 13: Accuracy of performance model. The vertical line represents
the min/max values.

Workload with different job arrival rates: In this ex-
periment, we vary the arrival rate of the base workload for
the same set of jobs. We submit jobs with arrival times that
follow a Poisson distribution, increasing the mean job arrival
time from 0 to 8 minutes. 0 arrival time means that we sumit
all jobs at once as the main experiment in §V-C, which shows
2.11× and 1.60× speedup in terms of JCT and makespan,
respectively. When we increase the mean job arrival time, the
performance starts to decrease slightly from 4 minutes due to
the decreasing number of concurrent jobs, and shows 2.01×
speedup of avg. JCT and 1.56× speedup of makespan at 8
minutes.

Lastly, we use job arrival rates processes from Google
cluster workload traces [32]. We extract 10 job arrival pro-
cesses randomly from different time windows. While the traces
have more diverse pattern of arrivals and job arrival spikes,
Harmony handles them well, showing 2.02× speedup of avg.
JCT and 1.57× speedup of makespan in average.

E. Accuracy of the Performance Model
To show how important the accuracy of the performance

model is, we simulate the execution with different error levels.
Figure 13a shows that Harmony manages to provide over 90%
of speedup with relatively small errors under 7.5%. However,
the performance of Harmony rapidly degrades with larger error
levels. It means that the high accuracy of the performance
model is crucial for multi-job performance.

We evaluate the accuracy of our performance model, which
is used by the scheduler to predict the group iteration time and
the resource utilization of the multiplexed jobs. We measure
the prediction error by comparing the actual performance and
the predicted performance for all scheduling decisions made
during all experiments in §V. Thanks to subtask execution
model, the prediction error stays below 5% at all times as
illustrated in Figure 13b.

F. Performance and Scalability of the Scheduling Algorithm

We evaluate Harmony’s scheduling algorithm with an ex-
haustive search that finds the ground truth that maximizes
resource utilization by measuring all possible search spaces.
We compare (1) how close the Harmony scheduling decision
is compared to the ground truth, and (2) how long it takes to
accomplish the scheduling algorithm.

Figure 14 shows the comparison result of resource uti-
lization, average JCT, and makespan, between the solution
found with the exhaustive search and the one provided by

849

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

CPU Network
0

50

100
Re

so
ur
ce
 U
til
. (
%
)

92.190.2 80.5 80.2

JCT Makespan
0

600

1200

Ti
m
e
(m

in
)

214 212

10841107

Oracle Harmony

Fig. 14: Comparison of resource utilization, average JCT, and
makespan to exhaustive search (Oracle).

Harmony. We see that the results in Harmony is slightly worse
by up to around 2%. The difference comes from the fact that
our scheduling algorithm finds its solution in a greedy way
with a preference of running smaller number of jobs together.
This prevents us from exploring the problem space further.
However, as shown in the results, the difference is insignificant
and this simplification leads to a much higher scalability.

In the experiment above, we run scheduling algorithms for
running 80 jobs on 100 machines. The average time to run the
scheduling algorithm during overall execution is 1.2 seconds in
Harmony and 13.8 minutes in Oracle. To test on a large-scale
environment (e.g., datacenters), we emulate the submission
and scheduling of thousands of jobs to thousands of machines.
According to the result, Harmony can schedule 8K jobs to
10K machines within 5 seconds. This result is comparable to
the performance of a scheduler developed recently [4] and a
default scheduler of a general RM [33]. On the other hand,
the exhaustive search algorithm for 4K jobs on 10K machines
takes about 10 hours, due to the exponential growth of the
running time of the scheduling algorithm.

G. Dynamic Data Reloading

We perform micro-benchmarks on dynamic data reloading.
To evaluate the capability of dynamic adaptation of disk block
ratio (αj) for each job j, we set a baseline that uses the same
fixed α for all jobs. In this experiment, we run 8 jobs (4
apps * 2 datasets) on 32 EC2 instances. The result shows
that when α is too high, group iteration slows down due
to the time of task being blocked by loading corresponding
input data blocks. When α is too low, GC explodes and
slows down the execution. By running the workload multiple
times with different αs, we found the minimum iteration time
of 52.9s at α = 0.3. Harmony achieves a 44.3s iteration
time automatically, which is 16.3% shorter than the manually
discovered value in the baseline. The difference comes from
the fact that Harmony can dynamically adjust the ratio using
different ratios for each job.

In our main experiment in §V-C, the average value of α is
0.34 and has a maximum of 1 and a minimum of 0.11. For only
three job groups made by the scheduler has a job with α value
1. To relieve the memory pressure further, Harmony enables
spill/reload of model data for those jobs. Though the model
data spill/reload is activated just a few times, we confirm that
it successfully prevents critical failures (e.g. OOM errors).

VI. DISCUSSION

Fault tolerance: Harmony employs standard failure han-
dling of ML training such as checkpointing (per epoch) and
restart. In addition to this, Harmony tries to prevent failures
of an individual job from affecting other co-located jobs.
For example, the shared runtime catches all exceptions and
handles them to prevent the system from crashing. However,
a machine/process failure (e.g., OOM) may have an impact on
all co-located jobs.

Multi-tenant cluster environment: We assume that we
obtain stable performance metrics, which will be used by our
performance model. However, in shared cluster environment,
the system may show unstable performance occasionally due
to interference (e.g., bursty traffics by other users) [34]. In
future, our work could be extended to dynamically respond to
temporal and permanent changes in profiled metrics.

Other communication architectures: Although Harmony
focuses on the PS architecture in this paper, its scheduling
approach can be easily applied to other communication ar-
chitecture such as all-reduce [35], because Harmony does not
care how exactly communication is done and only cares that
there are distinct computation and communication steps.

Deep-learning (DL) workload: In this paper, we have fo-
cused on non-DL workload. Our idea of multiplexing multiple
jobs can be extended to DL workload, since the execution
pattern of algorithms (i.e., alternating sequence of computation
and communication) and commonly used architectures (e.g.,
PS, All-Reduce) are similar to those of classical ML workload.
The biggest challenge is that DL workload typically uses GPU
resources, which are not designed to be shared in a fine-
grained manner [16].

VII. RELATED WORK

Many recent researches have introduced scheduling so-
lutions specialized to ML workloads [4]–[8]. All of them
have greatly improved the cluster performance, but most of
them do not consider co-location of multiple jobs into the
same resource unit. As a result, Harmony can be used in
complementary to the above systems, and vice versa.

Gandiva [16] has been suggested to support co-location
of DL jobs into the same GPU. However, Gandiva lacks a
clear performance model of co-located jobs, as the interfer-
ence makes the performance unpredictable. This black-box
approach results limited performance gain or loss in some
cases. Zhang et al. [36] solves the resource under-utilization
problem in datacenters by co-locating batch jobs and latency-
sensitive jobs. Unlike Harmony, they handle two different
types of workloads that have different schedule priorities.

Zhang et al. [36] and Morpheus [37] use historical in-
formation of repetitive jobs. For accurate modeling, Mor-
pheus focuses on mitigating performance unpredictability, like
Harmony, but only for periodic workloads using recurring
reservations. Harmony, on the other hand, provides analytical
performance model and uses online metrics without requiring
historical job information, making the system resilient to new
ML applications.

850

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

VIII. CONCLUSION

Harmony is a scheduling framework optimized for mul-
tiple PS ML jobs to improve cluster resource utilization.
Harmony co-locates jobs and coordinates them to share re-
sources effectively by minimizing contention of co-located
jobs with subtask execution model. To co-locate jobs that have
complementary resource use, Harmony dynamically groups
jobs based on the performance model with runtime-collected
metrics, adapting to changing pool of jobs. In addition, Har-
mony alleviates the increased memory pressure with dynamic
data reloading. We show that Harmony outperforms existing
scheduling approaches and is scalable enough to schedule
large-scale workloads. Harmony is open-sourced and publicly
available at https://github.com/snuspl/harmony.

ACKNOWLEDGEMENT

We thank all reviewers for their comments. This work
was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (2015-0-00221) (2017-0-01772)
(2020-0-01649), and by BK21 FOUR Intelligence Computing
funded by National Research Foundation of Korea (NRF)
(4199990214639), and by Samsung Advanced Institute of
Technology (20-0139).

REFERENCES

[1] Zhipeng Zhang, Jiawei Jiang, Wentao Wu, Ce Zhang, Lele Yu, and Bin
Cui. MLlib*: Fast training of GLMs using Spark MLlib. In ICDE, pages
1778–1789. IEEE, 2019.

[2] Zhipeng Zhang, Bin Cui, Yingxia Shao, Lele Yu, Jiawei Jiang, and
Xupeng Miao. PS2: Parameter Server on Spark. In SIGMOD, pages
376–388. ACM, 2019.

[3] Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu.
DeepGBM: A Deep Learning Framework Distilled by GBDT for Online
Prediction Tasks. In SIGKDD, pages 384–394. ACM, 2019.

[4] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: an efficient dynamic resource scheduler for deep learning
clusters. In EuroSys, 2018.

[5] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman.
SLAQ: quality-driven scheduling for distributed machine learning. In
SoCC. ACM, 2017.

[6] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. Online job
scheduling in distributed machine learning clusters. In INFOCOM, pages
495–503. IEEE, 2018.

[7] Peng Sun, Yonggang Wen, Nguyen Binh Duong Ta, and Shengen Yan.
Towards distributed machine learning in shared clusters: A dynamically-
partitioned approach. In SMARTCOMP, pages 1–6. IEEE, 2017.

[8] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias:
A GPU cluster manager for distributed deep learning. In NSDI, pages
485–500. USENIX, 2019.

[9] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server. In
OSDI. USENIX, 2014.

[10] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-
naraman. Project adam: Building an efficient and scalable deep learning
training system. In OSDI. USENIX, 2014.

[11] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gre-
gory R Ganger, Phillip B Gibbons, Garth A Gibson, and Eric P Xing.
Managed communication and consistency for fast data-parallel iterative
analytics. In SoCC. ACM, 2015.

[12] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. Proteus: Agile ML Elasticity Through Tiered
Reliability in Dynamic Resource Markets. In EuroSys, 2017.

[13] Woo-Yeon Lee, Yunseong Lee, Joo Seong Jeong, Gyeong-In Yu,
Joo Yeon Kim, Ho Jin Park, Beomyeol Jeon, Wonwook Song, Gunhee
Kim, Markus Weimer, et al. Automating system configuration of
distributed machine learning. In ICDCS, pages 2057–2067. IEEE, 2019.

[14] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communi-
cation efficient distributed machine learning with the parameter server.
In NIPS, pages 19–27, 2014.

[15] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads. In ATC, pages 947–
960. USENIX, 2019.

[16] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, et al. Gandiva: introspective
cluster scheduling for deep learning. In OSDI. USENIX, 2018.

[17] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson,
and Eric P Xing. High-performance distributed ML at scale through
parameter server consistency models. In AAAI, 2015.

[18] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.
More effective distributed ML via a stale synchronous parallel parameter
server. In NIPS, 2013.

[19] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,
Abhimanu Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B.
Gibbons, Garth A. Gibson, and Eric P. Xing. Exploiting bounded
staleness to speed up big data analytics. In ATC. USENIX, 2014.

[20] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. In ICLR Workshop Track, 2016.

[21] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and
Eric P Xing. GeePS: Scalable deep learning on distributed GPUs with
a GPU-specialized parameter server. In EuroSys, pages 1–16, 2016.

[22] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang,
Yanzhang Wang, Xianyan Jia, et al. BigDL: A distributed deep learning
framework for big data. In SoCC, pages 50–60. ACM, 2019.

[23] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R
Ganger, Garth Gibson, Kimberly Keeton, and Eric P Xing. Solving the
straggler problem with bounded staleness. In HotOS. USENIX, 2013.

[24] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware
distributed parameter servers. In SIGMOD, pages 463–478. ACM, 2017.

[25] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283. USENIX, 2016.

[26] Suhas Jayaram Subramanya, Harsha Vardhan Simhadri, Srajan Garg,
Anil Kag, and Venkatesh Balasubramanian. Blas-on-flash: An efficient
alternative for large scale ML training and inference? In NSDI. USENIX,
2019.

[27] Ahmed Elgohary, Matthias Boehm, Peter J Haas, Frederick R Reiss, and
Berthold Reinwald. Compressed linear algebra for large-scale machine
learning. The VLDB Journal, 27(5):719–744, 2018.

[28] Byung-Gon Chun, Tyson Condie, Yingda Chen, Brian Cho, Andrew
Chung, Carlo Curino, Chris Douglas, et al. Apache REEF: Retainable
evaluator execution framework. ACM TOCS, 35(2):1–31, 2017.

[29] James Bennett and Stan Lanning. The netflix prize. In Proceedings of
KDD cup and workshop, volume 2007, page 35, 2007.

[30] Dua Dheeru and Efi Karra Taniskidou. UCI ML repository, 2017.
[31] Carnegie Mellon University. Petuum Bösen, 2016. https://github.com/

sailing-pmls/bosen.
[32] John Wilkes and Charles Reiss. Google cluster traces, 2015. https:

//github.com/google/cluster-data/blob/master/ClusterData2011 2.md.
[33] Tyczynski Wojciech. Kubernetes scalability, 2017. https://kubernetes.io/

2017/03/scalability-updates-in-kubernetes-1.6.html.
[34] Jeffrey Dean and Luiz André Barroso. The tail at scale. CACM, 2013.
[35] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong,

Hyeonmin Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun.
Parallax: Sparsity-aware data parallel training of deep neural networks.
In EuroSys, page 43. ACM, 2019.

[36] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fon-
toura, Íñigo Goiri, and Ricardo Bianchini. History-based harvesting of
spare cycles and storage in large-scale datacenters. In OSDI, pages
755–770. USENIX, 2016.

[37] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov,
Íñigo Goiri, Subru Krishnan, et al. Morpheus: Towards Automated SLOs
for Enterprise Clusters. In OSDI, pages 117–134. USENIX, 2016.

851

Authorized licensed use limited to: Seoul National University. Downloaded on April 03,2023 at 20:07:46 UTC from IEEE Xplore. Restrictions apply.

