
SWAN: WAN-aware Stream Processing on
Geographically-distributed Clusters

Won Wook SONG, Myeongjae Jeon, and Byung-Gon Chun

Wide-area Streaming Analytics

Applications placed on multiple DCs
to provide low latency access

image: Flaticon.com
2

Demand for Analyzing Data from Multiple Datacenters

Need to extract business insights from
global log data and metrics

e.g. average, success rate, requests per document, top K, hot items..
image: Flaticon.com

3

WAN Characteristics

image: Flaticon.com
4

• Observe a GCP Cluster of 16 nodes across 8 regions over 3 continents
• e2-standard-4 (4vCPUs, 16GB Memory)

• Asia: Taiwan, Mumbai

• Europe: Finland, Belgium, Netherlands

• N. America: Iowa, South Carolina, Oregon

• Observe WAN networks between AWS nodes from 5 regions
• Asia: Osaka / Europe: Ireland / N. America: Canada, Ohio, Oregon

WAN Characteristics 1: Temporal Variability

image: Flaticon.com

Every ~6min

Every ~7min

Networks have varying
drop frequencies

A network example showing
bandwidth fluctuation over time

Every ~4min

5

Many number of physical factors and network users sharing
the limited WAN connections create unpredictability

image: Flaticon.com

8.5MB/s

33MB/s

81MB/s

502KB/s

903MB/s

WAN Characteristics 2: Spatial Variability

Average bandwidths vary among different locations

6

ISPs operate different infrastructures/equipments
between LAN networks

Stream Processing System Requirements

Low latency High throughput

Correctness Fast Adaptation

Existing Approach 1: Centralized Processing

image: Flaticon.com

Aggregate data to a single datacenter to use
a conventional stream data analytics engine

Ex. JetStream (NSDI ‘14), AWStream (SIGCOMM ‘18)

8

Centralized Processing are Inaccurate or App-Specific

image: Flaticon.com

Cannot be applied to workloads like fraud
detection, billing, transactional analysis

1. Pre-aggregation, degradation,
statistical approximation for reducing
the latency are often app-specific

2. Existing approaches of degrading raw
data affects the result accuracy

9

Approach 2: A Single Geo-Distributed Logical Cluster

image: Flaticon.com

Geo-Distributed Analytics Framework

Distributed Storage Layer

Distributed Execution Layer

Multi-stage analytics jobs

One Logical Datacenter

Ex. Iridium (SIGCOMM ‘15), Clarinet (OSDI ‘16), WANalytics (SIGMOD ‘15)

10

Suitable for stable networks
and batch workloads

Existing ILP-based Geo-Distributed Systems are Static

image: Flaticon.com

Geo-Distributed
Analytics Framework

Distributed Storage Layer

Distributed Execution Layer

One Logical Datacenter

*Mastrolilli et. al: (Acyclic) job shops are hard to approximate (FOCS ‘08)
*Monaldo et. al: Improved bounds for flow shop scheduling (ICALP ’09)

Limited optimization
capabilities

Requires checkpoint & replay
of continuous operators

11

1. Computing the best query execution
plan with task placement and schedules
is NP-hard*

2. Existing works apply slow ILPs, in a
greedy manner

3. Dynamic re-optimization is 25x slower
than conventional approaches for
handling temporal variations

Comparison on Different Systems

Centralization
through Degradation

ILP-based Geo-
distributed Systems SWAN

Real-time data
processing Dynamic (Stream) Static (Batch) Dynamic (Stream)

Logical geo-distributed
cluster X O O

Quick network
optimization

algorithm
O X O

Application-
agnostic X O O

Dynamic
optimization O X O

SWAN Design

Key Techniques and Effects

14

1. Good heuristics over an expensive solver to perform
timely dynamic optimizations

2. Query rewriting to fully cover promising longer paths
with higher bandwidths

SWAN Heuristics

Requirement 1: Tasks should be scattered more or less evenly,
to utilize the pool of CPU/memory resources

and prevent network congestion

Bandwidth: 18MB/s

Bandwidth: 23MB/s
9MB/s

2MB/s

6MB/s
15MB/s

16MB/s

15

SWAN Heuristics

Requirement 2: Distribute the tasks proportional to
upstream bandwidth capacities

16

Source

Map

GroupBy
Key

Write

SWAN Scheduling Algorithm

1. Set an upper limit for the number of tasks for each site

2. Calculate the potential network cost for the additional task
placed on a specific site.

3. Get the specific number of tasks to place on each site, based
on the remaining task slots and the potential network cost

SWAN Scheduling Algorithm Example

Map
ReduceAggregator

Physical Plan

=16 Tasks

18

= 3 sites with 3 nodes each

New York

Paris

Seoul

18MB/s

7MB/s

2MB/s

SWAN Scheduling Algorithm Example

Map
ReduceAggregator

Physical Plan

=16 Tasks
= 3 sites with 3 nodes each

New York

Paris

Seoul

18MB/s

7MB/s

2MB/s

⌈ !"
+ !$ ⌉ = 3 task slots per nodeTask slots of a site:

!
!"#$∈&'($

∑ 𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡
∑𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

+
1
2

𝟑×𝟑= 9 task slots per site
19

SWAN Scheduling Algorithm Example

Data sources are distributed across the globe

New York Paris
Seoul

7 remaining tasks,
3 task slots per node

18MB/s

7MB/s

2MB/s

20

SWAN Scheduling Algorithm Example

Calculate the distance coefficient and remaining slots
for each stage and site

New York Paris
Seoul

7 remaining tasks,
3 task slots per node

18MB/s

7MB/s

2MB/s

Network cost coefficient:

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

Slots left: 6
Coefficient: 𝟐

𝟏𝟖
+ 𝟑
𝟕

≈

Slots left: 7
Coefficient: 𝟑

𝟏𝟖
+ 𝟑
𝟐

≈ Slots left: 6
Coefficient: 𝟑𝟕+

𝟐
𝟐 ≈0.5

1.7 1.4

21

SWAN Scheduling Algorithm Example

Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]

New York Paris
Seoul

3 remaining tasks,
3 tasks per node

Distribution goal ≈ 𝟔
𝟎.𝟓
: 𝟕
𝟏.𝟕
: 𝟔
𝟏.𝟒

à 3:1:1

18MB/s

7MB/s

2MB/s

Slots left: 6
Coefficient: 𝟐𝟏𝟖+

𝟑
𝟕 ≈

Slots left: 7
Coefficient: 𝟑

𝟏𝟖
+ 𝟑
𝟐

≈ Slots left: 6
Coefficient: 𝟑

𝟕
+ 𝟐
𝟐

≈0.5
1.7

1.4Distribution factor:
𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠_𝑙𝑒𝑓𝑡&'($
𝑐𝑜𝑠𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡&'($

Network cost coefficient:

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

22

SWAN Scheduling Algorithm Example

New York Paris
Seoul

18MB/s

7MB/s

2MB/s 3 remaining tasks,
2 tasks per node

Slots left: 3
Coefficient: 𝟏

𝟏𝟖
+ 𝟏
𝟕

≈ 0.2

Slots left: 6
Coefficient: 𝟑

𝟏𝟖
+ 𝟏
𝟐

≈ 0.7
Slots left: 5
Coefficient: 𝟑

𝟕
+ 𝟏
𝟐

≈ 0.9

Network cost coefficient:

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

23

Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]

SWAN Scheduling Algorithm Example

New York Paris
Seoul

Distribution goal ≈ 𝟑𝟎.𝟐 :
𝟔
𝟎.𝟕 :

𝟓
𝟎.𝟗

à 2:1:0

18MB/s

7MB/s

2MB/s

Network cost coefficient:

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

Slots left: 3
Coefficient: 𝟏

𝟏𝟖
+ 𝟏
𝟕

≈ 0.2

Slots left: 6
Coefficient: 𝟑𝟏𝟖+

𝟏
𝟐 ≈ 0.7 Slots left: 5

Coefficient: 𝟑
𝟕
+ 𝟏
𝟐

≈ 0.9Distribution factor:
𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠_𝑙𝑒𝑓𝑡&'($
𝑐𝑜𝑠𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡&'($

24

Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]

Providing More Flexibility with Relay Operators
Region 1 Region 2 Average

Bandwidth
Asia-east Europe-west 742KB/s
Asia-east US-central 7.6MB/s
Europe-west US-central 18.1MB/s

25

Providing More Flexibility with Relay Operators
Region 1 Region 2 Average

Bandwidth
Asia-east Europe-west 742KB/s
Asia-east US-central 7.6MB/s
Europe-west US-central 18.1MB/s

26

SWAN Implementation

SWAN Implementation

Metric
Monitor

Metric monitor keeps track of the
global cluster networks asynchronously

28

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Launching an application triggers physical plan generation,
which is submitted to the scheduling policy

Physical Plan

29

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

The scheduling policy allocates each task to a node
and submits the plan to the scheduler

Physical Plan

Scheduler

30

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Scheduler

31
The scheduler distributes tasks to executors according to the plan

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Scheduler

32
The scheduler distributes tasks to executors according to the plan

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Scheduler

When metrics call for a change (latency rise, network drop, etc.)
metric monitor calls for an optimization on the compiler

Optimize!

33

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Scheduler

The compiler sends a watermark that tells all nodes
to checkpoint their tasks

Physical Plan’

Optimize!
(Checkpoint!)

34

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

The physical plan is optimized and re-submitted to the scheduler

Physical Plan’

Scheduler

35

Heuristic-based SWAN
Scheduling Policy

Compiler

Metric
Monitor

Application

SWAN Implementation

Scheduler

Tasks are migrated according to the new schedule plan
and executes from the checkpointed state 36

Evaluation

Evaluation Results

• GCP Cluster of 16 nodes across 8 regions over 3 continents
• e2-standard-4 (4vCPUs, 16GB Memory)

• Asia: Taiwan, Mumbai

• Europe: Finland, Belgium, Netherlands

• N. America: Iowa, South Carolina, Oregon

• NEXMark Benchmark Suite
• A suite of pipelines, provided by Apache Beam, representing an online auction system

• Following examples show a case in Query 4 (average price per category),

which illustrates complex join and aggregation, involving the most shuffle operations
38

Evaluation Results: Query 4 Execution DAG

Source
Filter

auction
or bid

Window

Filter
just new
auction

Filter
just Bid

GroupBy
Key

Join
Filter

winning
bids

(max)

Re-key
to

category

Final
Combine
(Mean)

Partial
Combine
(Mean)

Filter and window
Join (get winning bids)

Reduce (mean)

Query 4: average price per category
39

Evaluation Results: Query 4 Average Price for Category

SELECT Istream(AVG(Q.final))

FROM Category C, (SELECT Rstream(MAX(B.price) AS final, A.category)

FROM Auction A [ROWS UNBOUNDED], Bid B [ROWS UNBOUNDED]

WHERE A.id=B.auction AND B.datetime < A.expires

AND A.expires < CURRENT_TIME

GROUP BY A.id, A.category) Q

WHERE Q.category = C.id

GROUP BY C.id;

40

Evaluation Results

Heuristic approach prevents the delay
caused by ILP optimization

ILP delays
processing

Trigger
optimization

Conv. approach
degrades over time

41

Scheduling Overhead of Different Algorithms

42

25x

Evaluation Results: Relay Operators

Relay operator insertion increases the throughput bytes
by leveraging paths with higher bandwidths 43

Conclusion

• In WAN environments, spatial and temporal BW variations exist

• Existing stream systems aim to solve temporal variation with a centralized
approach and degradation methods to maintain low latency

• Existing batch systems aim to solve spatial variation for lower network
costs with slow ILPs

• SWAN provides a fast heuristic model to solve both problems
• SWAN provides query rewriting methods to fully cover

larger BWs from longer paths

44

Thank you!

