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Wide-area Streaming Analytics

Applications placed on multiple DCs
to provide low latency access

image: Flaticon.com
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Demand for Analyzing Data from Multiple Datacenters

Need to extract business insights from 
global log data and metrics

e.g. average, success rate, requests per document, top K, hot items..
image: Flaticon.com
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WAN Characteristics

image: Flaticon.com
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• Observe a GCP Cluster of 16 nodes across 8 regions over 3 continents
• e2-standard-4 (4vCPUs, 16GB Memory)

• Asia: Taiwan, Mumbai

• Europe: Finland, Belgium, Netherlands

• N. America: Iowa, South Carolina, Oregon

• Observe WAN networks between AWS nodes from 5 regions
• Asia: Osaka / Europe: Ireland / N. America: Canada, Ohio, Oregon



WAN Characteristics 1: Temporal Variability

image: Flaticon.com

Every ~6min

Every ~7min

Networks have varying
drop frequencies

A network example showing 
bandwidth fluctuation over time

Every ~4min
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Many number of physical factors and network users sharing 
the limited WAN connections create unpredictability
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8.5MB/s

33MB/s

81MB/s

502KB/s

903MB/s

WAN Characteristics 2: Spatial Variability

Average bandwidths vary among different locations

6

ISPs operate different infrastructures/equipments 
between LAN networks



Stream Processing System Requirements

Low latency High throughput

Correctness Fast Adaptation



Existing Approach 1: Centralized Processing

image: Flaticon.com

Aggregate data to a single datacenter to use 
a conventional stream data analytics engine

Ex. JetStream (NSDI ‘14), AWStream (SIGCOMM ‘18)
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Centralized Processing are Inaccurate or App-Specific

image: Flaticon.com

Cannot be applied to workloads like fraud 
detection, billing, transactional analysis

1. Pre-aggregation, degradation, 
statistical approximation for reducing 
the latency are often app-specific

2. Existing approaches of degrading raw 
data affects the result accuracy
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Approach 2: A Single Geo-Distributed Logical Cluster

image: Flaticon.com

Geo-Distributed Analytics Framework

Distributed Storage Layer

Distributed Execution Layer

Multi-stage analytics jobs

One Logical Datacenter

Ex. Iridium (SIGCOMM ‘15), Clarinet (OSDI ‘16), WANalytics (SIGMOD ‘15)
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Suitable for stable networks 
and batch workloads

Existing ILP-based Geo-Distributed Systems are Static

image: Flaticon.com

Geo-Distributed 
Analytics Framework

Distributed Storage Layer

Distributed Execution Layer

One Logical Datacenter

*Mastrolilli et. al: (Acyclic) job shops are hard to approximate (FOCS ‘08)
*Monaldo et. al: Improved bounds for flow shop scheduling (ICALP ’09)

Limited optimization 
capabilities

Requires checkpoint & replay 
of continuous operators
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1. Computing the best query execution 
plan with task placement and schedules 
is NP-hard*

2. Existing works apply slow ILPs, in a 
greedy manner

3. Dynamic re-optimization is 25x slower 
than conventional approaches for 
handling temporal variations



Comparison on Different Systems

Centralization 
through Degradation

ILP-based Geo-
distributed Systems SWAN

Real-time data 
processing Dynamic (Stream) Static (Batch) Dynamic (Stream)

Logical geo-distributed 
cluster X O O

Quick network
optimization 

algorithm
O X O

Application-
agnostic X O O

Dynamic 
optimization O X O



SWAN Design



Key Techniques and Effects
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1. Good heuristics over an expensive solver to perform 
timely dynamic optimizations

2. Query rewriting to fully cover promising longer paths 
with higher bandwidths



SWAN Heuristics

Requirement 1: Tasks should be scattered more or less evenly, 
to utilize the pool of CPU/memory resources 

and prevent network congestion

Bandwidth: 18MB/s

Bandwidth: 23MB/s
9MB/s

2MB/s

6MB/s
15MB/s

16MB/s
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SWAN Heuristics

Requirement 2: Distribute the tasks proportional to 
upstream bandwidth capacities
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Source

Map

GroupBy
Key

Write



SWAN Scheduling Algorithm

1. Set an upper limit for the number of tasks for each site

2. Calculate the potential network cost for the additional task 
placed on a specific site.

3. Get the specific number of tasks to place on each site, based 
on the remaining task slots and the potential network cost



SWAN Scheduling Algorithm Example

Map
ReduceAggregator

Physical Plan

=16 Tasks

18

= 3 sites with 3 nodes each

New York

Paris

Seoul

18MB/s

7MB/s

2MB/s



SWAN Scheduling Algorithm Example

Map
ReduceAggregator

Physical Plan

=16 Tasks
= 3 sites with 3 nodes each

New York

Paris

Seoul

18MB/s

7MB/s

2MB/s

⌈ !"
# + !$ ⌉ = 3 task slots per nodeTask slots of a site: 

!
!"#$∈&'($

∑ 𝑡𝑎𝑠𝑘𝑠_𝑐𝑜𝑢𝑛𝑡
∑𝑛𝑜𝑑𝑒_𝑐𝑜𝑢𝑛𝑡

+
1
2

𝟑×𝟑= 9 task slots per site
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SWAN Scheduling Algorithm Example

Data sources are distributed across the globe

New York Paris
Seoul

7 remaining tasks, 
3 task slots per node

18MB/s

7MB/s

2MB/s
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SWAN Scheduling Algorithm Example

Calculate the distance coefficient and remaining slots
for each stage and site

New York Paris
Seoul

7 remaining tasks, 
3 task slots per node

18MB/s

7MB/s

2MB/s

Network cost coefficient: 

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

Slots left: 6 
Coefficient: 𝟐

𝟏𝟖
+ 𝟑
𝟕

≈

Slots left: 7 
Coefficient: 𝟑

𝟏𝟖
+ 𝟑
𝟐

≈ Slots left: 6
Coefficient: 𝟑𝟕+

𝟐
𝟐 ≈0.5

1.7 1.4
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SWAN Scheduling Algorithm Example

Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]

New York Paris
Seoul

3 remaining tasks,
3 tasks per node

Distribution goal ≈ 𝟔
𝟎.𝟓
: 𝟕
𝟏.𝟕
: 𝟔
𝟏.𝟒

à 3:1:1

18MB/s

7MB/s

2MB/s

Slots left: 6 
Coefficient: 𝟐𝟏𝟖+

𝟑
𝟕 ≈

Slots left: 7 
Coefficient: 𝟑

𝟏𝟖
+ 𝟑
𝟐

≈ Slots left: 6
Coefficient: 𝟑

𝟕
+ 𝟐
𝟐

≈0.5
1.7

1.4Distribution factor: 
𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠_𝑙𝑒𝑓𝑡&'($
𝑐𝑜𝑠𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡&'($

Network cost coefficient: 

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($
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SWAN Scheduling Algorithm Example

New York Paris
Seoul

18MB/s

7MB/s

2MB/s 3 remaining tasks,
2 tasks per node

Slots left: 3
Coefficient: 𝟏

𝟏𝟖
+ 𝟏
𝟕

≈ 0.2

Slots left: 6
Coefficient: 𝟑

𝟏𝟖
+ 𝟏
𝟐

≈ 0.7
Slots left: 5
Coefficient: 𝟑

𝟕
+ 𝟏
𝟐

≈ 0.9

Network cost coefficient: 

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($
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Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]



SWAN Scheduling Algorithm Example

New York Paris
Seoul

Distribution goal ≈ 𝟑𝟎.𝟐 :
𝟔
𝟎.𝟕 :

𝟓
𝟎.𝟗

à 2:1:0

18MB/s

7MB/s

2MB/s

Network cost coefficient: 

!
#𝑜𝑓 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑠𝑘𝑠&'($

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ&'($

Slots left: 3
Coefficient: 𝟏

𝟏𝟖
+ 𝟏
𝟕

≈ 0.2

Slots left: 6
Coefficient: 𝟑𝟏𝟖+

𝟏
𝟐 ≈ 0.7 Slots left: 5

Coefficient: 𝟑
𝟕
+ 𝟏
𝟐

≈ 0.9Distribution factor: 
𝑡𝑎𝑠𝑘_𝑠𝑙𝑜𝑡𝑠_𝑙𝑒𝑓𝑡&'($
𝑐𝑜𝑠𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡&'($
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Place tasks on sites where the distribution ratio is
most proportional to [remaining slots / network cost coefficient]



Providing More Flexibility with Relay Operators
Region 1 Region 2 Average 

Bandwidth
Asia-east Europe-west 742KB/s
Asia-east US-central 7.6MB/s
Europe-west US-central 18.1MB/s
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Providing More Flexibility with Relay Operators
Region 1 Region 2 Average 

Bandwidth
Asia-east Europe-west 742KB/s
Asia-east US-central 7.6MB/s
Europe-west US-central 18.1MB/s
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SWAN Implementation



SWAN Implementation

Metric 
Monitor

Metric monitor keeps track of the 
global cluster networks asynchronously
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Launching an application triggers physical plan generation,
which is submitted to the scheduling policy

Physical Plan
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

The scheduling policy allocates each task to a node
and submits the plan to the scheduler

Physical Plan

Scheduler
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Scheduler

31
The scheduler distributes tasks to executors according to the plan



Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Scheduler
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The scheduler distributes tasks to executors according to the plan



Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Scheduler

When metrics call for a change (latency rise, network drop, etc.)
metric monitor calls for an optimization on the compiler

Optimize!
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Scheduler

The compiler sends a watermark that tells all nodes 
to checkpoint their tasks

Physical Plan’

Optimize!
(Checkpoint!)
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

The physical plan is optimized and re-submitted to the scheduler 

Physical Plan’

Scheduler
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Heuristic-based SWAN 
Scheduling Policy

Compiler

Metric 
Monitor

Application

SWAN Implementation

Scheduler

Tasks are migrated according to the new schedule plan 
and executes from the checkpointed state 36



Evaluation



Evaluation Results

• GCP Cluster of 16 nodes across 8 regions over 3 continents
• e2-standard-4 (4vCPUs, 16GB Memory)

• Asia: Taiwan, Mumbai

• Europe: Finland, Belgium, Netherlands

• N. America: Iowa, South Carolina, Oregon

• NEXMark Benchmark Suite
• A suite of pipelines, provided by Apache Beam, representing an online auction system

• Following examples show a case in Query 4 (average price per category), 

which illustrates complex join and aggregation, involving the most shuffle operations
38



Evaluation Results: Query 4 Execution DAG

Source
Filter

auction 
or bid

Window

Filter
just new 
auction

Filter
just Bid

GroupBy
Key

Join
Filter 

winning 
bids 

(max)

Re-key 
to 

category

Final 
Combine 
(Mean)

Partial 
Combine 
(Mean)

Filter and window
Join (get winning bids)

Reduce (mean)

Query 4: average price per category
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Evaluation Results: Query 4 Average Price for Category 

SELECT Istream(AVG(Q.final))

FROM Category C, (SELECT Rstream(MAX(B.price) AS final, A.category)

FROM Auction A [ROWS UNBOUNDED], Bid B [ROWS UNBOUNDED]

WHERE A.id=B.auction AND B.datetime < A.expires

AND A.expires < CURRENT_TIME

GROUP BY A.id, A.category) Q

WHERE Q.category = C.id

GROUP BY C.id;
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Evaluation Results

Heuristic approach prevents the delay 
caused by ILP optimization

ILP delays 
processing

Trigger 
optimization

Conv. approach 
degrades over time
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Scheduling Overhead of Different Algorithms

42
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Evaluation Results: Relay Operators

Relay operator insertion increases the throughput bytes 
by leveraging paths with higher bandwidths 43



Conclusion

• In WAN environments, spatial and temporal BW variations exist

• Existing stream systems aim to solve temporal variation with a centralized 
approach and degradation methods to maintain low latency

• Existing batch systems aim to solve spatial variation for lower network 
costs with slow ILPs

• SWAN provides a fast heuristic model to solve both problems
• SWAN provides query rewriting methods to fully cover 

larger BWs from longer paths
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Thank you!


