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Optimizing scheduling and communication of distributed data processing for resource and data characteris-
tics is crucial for achieving high performance. Existing approaches to such optimizations largely fall into two
categories. First, distributed runtimes provide low-level policy interfaces to apply the optimizations, but do
not ensure the maintenance of correct application semantics and thus often require significant effort to use.
Second, policy interfaces that extend a high-level application programming model ensure correctness, but do
not provide sufficient fine control.

We describe Apache Nemo, an optimization framework for distributed dataflow processing that provides
fine control for high performance and also ensures correctness for ease of use. We combine several techniques
to achieve this, including an intermediate representation of dataflow, compiler optimization passes, and run-
time extensions. Our evaluation results show that Nemo enables composable and reusable optimizations that
bring performance improvements on par with existing specialized runtimes tailored for a specific deployment
scenario. Apache Nemo is open-sourced at https://nemo.apache.org as an Apache incubator project.
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1 INTRODUCTION

It is becoming increasingly important to optimize scheduling and communication for different
characteristics of resources and data in distributed data processing. Examples of such characteris-
tics widely discussed in recent literature are geographically distributed resources [14, 30, 47, 48],
cheap transient resources [34, 35, 39, 52, 54], disk-based large data shuffle [32, 33, 57], and
skewed data [17, 20, 21, 31]. Researchers have shown that the existing scheduling and commu-
nication methods, unaware of these characteristics, often suffer from substantial performance
degradation.

Distributed runtimes such as Dryad [15], Tez [37], and the Spark runtime [44] provide low-level
interfaces to plug in computation scheduler and data channel policies to optimize for such diverse
deployment scenarios. These policy interfaces have direct access to control messages and data ele-
ments and can apply optimizations such as placing computations on specific types of resources and
performing in-memory data shuffle. Unfortunately, runtime policy developers must exercise care
to ensure that the policies they build and apply maintain correct application semantics. The main
reason is that runtime interfaces are designed to be general and allow for arbitrary modifications
to scheduling and communication methods.

However, policy interfaces integrated with a high-level application programming model offer in-
direct control over runtime execution. For example, Optimus [17] integrates with the DryadLINQ
programming model to enable specifying alternative DryadLINQ subqueries. This ensures correct
application semantics as long as the specified subqueries compute the same results, and thus re-
duces the effort required to build different optimization policies. However, such application-level
interfaces do not provide sufficient fine control over distributed scheduling and communication,
such as selecting the type of resources to schedule and execute specific computations on, because
application programming models are designed to hide the distributed execution from application
developers.

To overcome the limitations of existing interfaces, we believe it is critical to introduce a new
policy interface that provides both fine control for high performance and also ensures correct ap-
plication semantics for ease of use. In this work, we take a middle ground between the existing
runtime and application-level interfaces. We design a policy interface that transforms an inter-

mediate representation (IR) of applications to express indirect but fine-grained control over
distributed scheduling and communication.

There are three main challenges to designing an optimization framework that embodies this
middle-ground approach. First, the framework should define the IR transformation methods that
provide fine control and also ensure correctness. Second, the framework should enable the de-
velopment of reusable and composable user-defined optimization policies that transform the IR.
Third, the framework should apply the transformations of the IR in the distributed execution of
the application.

Figure 1 depicts our Nemo optimization framework that addresses the challenges. Specifically,
its IR directed-acyclic graph (DAG), compiler optimization passes, and runtime extensions ad-
dress the three challenges, respectively. Nemo integrates with high-level application programming
model libraries and compatible distributed runtimes.
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Fig. 1. Nemo optimizes scheduling and communication of distributed data processing.

First, the Nemo IR DAG represents a data-processing application with vertices representing
logical operations and edges representing data dependencies. To ensure that the transformed IR
DAG produces the same outputs as the original IR DAG, we provide two types of transformation
methods: reshaping and annotation. Reshaping methods can insert a set of utility vertices whose
semantics are known to Nemo, such as a vertex that samples data. Annotation methods set execu-
tion properties of each vertex and edge to configure fine-grained scheduling and communication,
such as speculative cloning and data persistence strategies. Nemo ensures correctness using the
information about the communication patterns (e.g., shuffle) of edges and the information about
the configured utility vertices and execution properties.

Second, the Nemo optimization pass abstraction enables expressing such optimizations as a func-
tion that takes as input an IR DAG and calls its transformation methods. Because a pass is a simple
function, different combinations of passes can be composed and applied across different applica-
tions. We show that optimization techniques previously employed in specialized runtimes, such
as Iridium [30] and Pado [54], can be expressed as optimization passes with concise lines of code.

Third, the Nemo runtime extensions integrate with the underlying runtime to apply the IR DAG
transformations. Runtimes typically provide a runtime DAG abstraction to run computations on a
cluster of machines [15, 37, 44]. Our scheduler extension applies various scheduling policies when
scheduling the IR vertices of an IR DAG through a runtime DAG. It also rewrites the runtime
DAG during job execution to apply runtime optimizations. Our data channel extension applies the
optimized data communication within the runtime DAG.

We have implemented Nemo and also a distributed runtime that is compatible with Nemo. At
present, Nemo provides full support for Beam [40] applications and a subset of Spark RDD [56]
applications. Our runtime integrates with REEF [49] to run on Hadoop YARN [43] and Mesos [13]
clusters. We have evaluated Nemo in a cluster of Amazon EC2 instances using different optimiza-
tion passes, datasets, and resource environments. Evaluation results show that each optimization
pass brings performance improvements on par with existing specialized runtimes, and combina-
tions of passes further improve performance for scenarios with a combination of different resource
and data characteristics. Apache Nemo is open-sourced at https://nemo.apache.org as an Apache
incubator project.

2 BACKGROUND

We first describe the fundamentals of distributed data processing. Then, we discuss in detail
the existing runtime policy interfaces and application-level policy interfaces using concrete code
examples.
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2.1 Distributed Data Processing

Most distributed data processing systems adopt a dataflow-based execution model, which rep-
resents data-processing applications as DAGs. In Spark [44], RDDs (resilient distributed

datasets) [56] represent datasets that result from source read operations and the different computa-
tional logics, defined as Spark transformations, performed on previous RDDs. On Beam [40], PCol-
lections represent datasets that are read from data sources or computed by PTransforms, which
are operations that are similar to Spark transformations. Each of such dataset abstractions are
connected by data dependencies and computations between the datasets.

In these applications, the initial datasets are generated from source operations (e.g., file read
from HDFS), and the following datasets are the results of the computations from these initial
datasets. Each dataset is split into multiple data partitions, each of which is a portion of the dataset
that can be processed by the computational operations (e.g., a text split into individual paragraphs
in a word-count example). Depending on the characteristics of the computations and the number
of partitions for each of the datasets, the data dependencies can be represented as a one-to-one, a
shuffle, or a broadcast communication pattern. A one-to-one dependency represents an element-
wise computation that can be done on a single partition and result in its corresponding partition
(e.g., transforming an element to another, like splitting a paragraph string into a set of individual
words of the paragraph), whereas a shuffle dependency represents a computation that produces
its results from multiple input partitions (e.g., grouping elements of a specific key together, like
summing the occurrences of each word from multiple sets of different words). A broadcast depen-
dency represents input partitions that are distributed across multiple nodes for it to be available
for the following computations on them.

Since computations within a job that involve one-to-one dependencies are element-wise opera-
tions, they can be grouped together into stages, which consist of computations that can be sequen-
tially run on individual elements. Each stage can then be split into multiple parallel tasks, each of
which performs the computation on its allocated partitions of the dataset on an executor.

Once a job fails to execute due to different reasons, such as task failures or lack of memory
storages, it is required for tasks to be re-launched to recompute for the lost intermediate data. To
reduce the recomputations, data processing systems provide caching and checkpointing mecha-
nisms to prevent the intermediate data from being lost or to store them on reliable storage media
for stable potential usages. Moreover, to handle slow tasks that are hung or stuck in a job, systems
often also support speculative execution that executes backup tasks to prevent bottlenecks caused
by the straggler tasks. In the next subsection, we describe how existing application and runtime
interfaces describe the distributed data processing.

2.2 Optimization Policy Interfaces

In this subsection, we describe the interfaces of Dryad [15] and Optimus [17] in detail, to discuss the
existing runtime policy interfaces and application-level policy interfaces. First, the Dryad policy
interface allows for arbitrary modifications to its DAG representation, illustrating the execution
graph of the applications. In a Dryad DAG, a vertex represents a unit of work performed on a
machine and an edge represents a data transfer from a vertex to another. For example, a map-reduce
application can be represented in Dryad as a number of map vertices fully connected with a number
of reduce vertices with a shuffle dependency. The Dryad runtime coordinates the scheduling and
communication of the vertices on a cluster of machines.

Figure 2 shows the pseudocode of two example Dryad policies [27]. Here, ConnectionManager
is a callback-based abstraction that listens to events from the configured upstream vertices. First,
TreeAggregate builds an aggregation tree with a goal to use network bandwidth resources more
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Fig. 2. Pseudocode of Dryad policies. The Dryad policy interface provides fine control over distributed sched-

uling and communication, but does not ensure correctness.

efficiently. Suppose TreeAggregate listens to the map vertices in a map-reduce application to
obtain the information on the locations and sizes of map vertex outputs. Using the information,
TreeAggregate groups map vertices, creates intermediate aggregation vertices, and then connects
each map vertex group to an aggregation vertex. Second, Repartition dynamically distributes
data with a goal to handle data skew. Suppose the map-reduce application additionally has buck-
etizer vertices that consume sample output data from the map vertices and partition vertices that
partition the original map vertex outputs prior to transferring the data to the reduce vertices. Then,
Repartition can be used to monitor the bucketizer vertices and modify the partition and reduce
vertices with the goal to evenly distribute the map outputs. As shown by these examples, runtime
policies can configure various scheduling and communication methods.

However, the flexibility of runtime interfaces comes at a cost: the policy developer must ex-
ercise care to ensure application correctness when developing, reusing, and composing different
policies [15, 17, 37, 44]. First, the interface may lead to a bug in TreeAggregate to miss connecting
one of the map vertices to an intermediate aggregation vertex, making the optimized DAG produce
incorrect partial results. Second, Repartition can break application semantics when applied on a
random vertex in a different DAG that does not use bucketizer and partition vertices. Third, apply-
ing both TreeAggregate and Repartition on the same DAG can lead to conflicting executions
that produce incorrect results. Manually building a combined policy can require a significant ef-
fort for complex policies, such as the DrDynamicAggregateManager in Dryad, which consists of
1.3K lines of C++ code [27]. As a consequence, runtime policies have been mostly hard coded in
runtimes and data-processing application compilers such as the DryadLINQ compiler [17, 55] and
the Hive compiler [45]. The authors of Optimus also report that their system-level optimization
policies are hard-coded in the DryadLINQ compiler, maintaining the DAG property and operator
semantics for the pre-defined operators in DryadLINQ [17].

In contrast to the runtime interfaces, Optimus provides an application-level policy interface that
ensures correctness by restricting the interface to substituting DryadLINQ subqueries. Figure 3
shows the pseudocode for optimizing a matrix multiplication application described in the original
Optimus paper [17]. The code defines two alternative subqueries for multiplying two matrices and
a policy for selecting a subquery to use for the execution. Note that as long as the two subqueries
produce the same results, changing the policy code does not alter the semantics of the application.
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Fig. 3. Pseudocode of an Optimus policy. The application-level Optimus policy interface ensures correctness,

but provides coarse-grained control of substituting subqueries.

However, as this example shows, such application-level policy interfaces lack fine-grained control
over scheduling and communication. Such fine-grained control includes selecting the types of
resources to schedule specific computations on, and whether to store intermediate data on disks
or in memory, which enables efficient distribution and usages of computing resources and faster
data processing. The main reason is that application programming models are designed to hide
the distributed execution from application developers.

3 SYSTEM DESIGN

The goal of the Nemo optimization framework is to support fine control over distributed execu-
tion of data-processing applications and at the same time maintain correct application semantics.
Concretely, given a DAG representation of a data-processing application with deterministic oper-
ations and a user-defined policy P where DAG ′ = P (DAG ), Nemo aims to provide the following
properties.

• Correctness: Given the same inputs the optimized DAG ′ should produce the same outputs
as the original DAG, even when P is applied in the midst of the DAG execution. This ensures
that the optimizations maintain correct application semantics.
• Reusability: The same P should be applicable to different DAGs. This enables for reusing

the same policy across different data-processing applications, although the effects may differ
between applications.
• Composability: If P and P ′ do not override optimizations specified by the other policy, then

enable composing different policies like P ′′ = (P ◦P ′). If the policies do have a conflict, then
it automatically detects it for analysis. This enables distinct policies that each optimizes for
a different resource or data characteristic to be incorporated into a single policy.

We show how Nemo combines an intermediate representation (IR) DAG, compiler optimiza-
tion passes, and runtime extensions to ensure these properties. First, the IR DAG provides reshap-
ing and annotation methods for specifying the optimizations (Section 3.1). Second, optimization
passes define the functions that operate on the IR DAG methods (Section 3.2). Third, runtime ex-
tensions apply the optimizations in the underlying runtime and the execution (Section 3.3).

3.1 Intermediate Representation

The Nemo IR DAG aims to provide the desired DAG representation of an application. The main
challenge in designing the IR DAG is defining the methods for transforming it. For Nemo to en-
sure the desired properties, we make explicit both the intention and the effect of the optimiza-
tion for each method invocation. For example, instead of providing a single method to insert
arbitrary computations, we provide multiple higher-level methods to achieve diverse goals, includ-
ing, but not limited to, increasing parallelism, speculative cloning, and sampling. We describe the
IR DAG reshaping and annotation methods that embody this approach, and in particular how those
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methods enable ensuring correctness. We then discuss the types of applications and runtimes sup-
ported by our IR DAG design.

3.1.1 Constructing an IR DAG. To construct an IR DAG, Nemo first accepts data-processing
applications written in different dataflow programming interfaces, such as Spark RDDs [56] and
Beam [40] applications. These applications typically consist of computational functions defined
by the programming interface. By importing our runners in these applications instead of their
native runners (i.e., Spark Runtime, Google Cloud Dataflow), it calls for our visitor interface, which
traverses the data-processing application and extracts the computational functions and dataflow
logics and wraps them inside the Nemo IR DAG abstraction without modifying the underlying
logics.

The resulting Nemo IR DAG represents a data-processing application with vertices representing
logical operations and edges representing data dependencies. The vertices are connected with
edges with the information on communication patterns (one-to-one, shuffle, broadcast). When
executed, an IR vertex is translated into parallel tasks that run on multiple nodes. An IR edge
can be translated into key-partitioned data blocks that are produced by tasks. The IR vertices
and edges wrap the computational functions that are defined with the different programming
interfaces, so they can be annotated and modified with our optimization passes without modifying
the underlying application semantics.

Concretely, Nemo wraps the computational functions and the application logic inside the
SourceVertex or the OperatorVertex interface, depending on whether the operation reads from
a source or intermediate data. While SourceVertex contains the list of Readables that it can read
from, OperatorVertex contains a Transform that performs prepare, for preparing the operation,
onData, for processing the data, and close, for cleaning up, in the specified order.

Beam [40] transforms and RDD [56] transformations and actions are wrapped by the interface
to construct the IR DAG. Specifically, as all Beam transforms can be expressed with the six core
Beam transforms (e.g., ParDo, GroupByKey, CoGroupByKey, Combine, Flatten, Partition), we
implement the interface for the core transforms. For Spark RDDs, we implement the interface to
call each of the methods corresponding to transforms and actions, supported by the Spark RDD
abstraction. While Nemo currently embodies the implementations for Beam and Spark, it may be
easily extended to other application semantics as long as it can be wrapped by the aforementioned
interfaces.

3.1.2 Transforming an IR DAG. Once the IR DAG is constructed, users can perform optimiza-
tions on the DAG while preserving the application logic itself. We expose the configurations to
control the ways to schedule and transfer data during the execution on a cluster of multiple ma-
chines, but not how the data is actually processed. Users can choose to transform and customize
the IR DAG themselves or to use the optimizations that are developed and provided by the Nemo
developers.

Table 1 shows examples of reshaping and annotation methods that Nemo provides for trans-
forming the IR DAG. The reshaping methods specify a utility vertex to insert into the IR DAG,
and Nemo inserts new edges to connect the specified vertex with the existing vertices in the IR
DAG. Utility vertices are restricted so they do not alter application semantics or the computational
logics. This way, we can guarantee application correctness of the reshaping methods. Table 1 spec-
ifies four utility vertices. Relay and Reshuffle simply apply an identity function to forward data
from an upstream vertex to a downstream vertex, connecting with the downstream vertex with the
one-to-one and the shuffle dependency, respectively. Sampling vertex applies the same function
as an existing vertex and consumes the same data that the existing vertex consumes. During the
execution, Nemo schedules only a subset of Sampling tasks according to the given sampling rate.
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Table 1. Example IR DAG Transformation Methods for Optimizing Scheduling and Communication

IR DAG
Reshaping:

irdag.insert()

Relay ( f : x → x ), e : V ∪ {v},E \ {e} ∪ {e .comm(e .src →
v ),oneToOne (v → e .dst )}

Reshu f f le ( f : x → x ), e : V ∪ {v},E \ {e} ∪ {e .comm(e .src →
v ), shu f f le (v → e .dst )}

Samplinд( f : x →
sv . f (x )), sv, rate

: V ∪ {v},E ∪ {e .comm(e .src → v ) |e ∈
E ∧ e .dst = sv}

MessaдeGenerator ( f : x →
ud f (x )),ud f , e

: V ∪ {v},E ∪ {oneToOne (e .src → v )}

(V /E = original vertex/edge set, v = inserted vertex,
f = function of v , e .comm = oneToOne/shuffle/broadcast)

IR Vertex
Annotation:

v.set()

Parallelism/Int : sets the number of tasks for
executing v

SpeculativeCloninд/Thresholds : sets the thresholds for determining
and cloning straggler tasks

ResourceSite/Map (Index , Site ) : sets the geographical sites of the
resources to place tasks on

ResourcePriority/Enum(Type ) : sets the priority of the resources to
place tasks on

ResourceAntiAf f inity/Set (Int ) : specifies the group of tasks that
should run on different executors

ResourceLocality/Boolean : sets whether to schedule the tasks
where each of its input data reside

ScheduleGroup/Int : sets the order of execution for the
scheduler

IR Edge

Annotation:
e.set()

DataFlow/Enum(Pull |Push) : e .dst is scheduled after e .src
finishes, or scheduled concurrently

DataStore/Enum(Memory |Disk ) : e .src tasks store output data for e in
memory, or disk

NumPartitions/Int : sets the number of partitions that
e .src tasks create for e

PartitionSets/List (Set (Index )) : sets the partitions that each e .dst
task fetches for e

Persistence/Enum(Keep |Discard ) : sets whether to keep or discard data
after e .dst processes e

CacheID/UU ID : ID to identify the cached data
Compression/Enum(Method ) : method to use for compression

Reshaping methods take as input a utility vertex and additional arguments. Annotation methods take as input a
key/value execution property.

MessageGenerator vertex applies a user-defined function on intermediate data. When a Message-
Generator vertex executes and completes, Nemo collects the results of the user-defined function
to generate a message containing the information on execution metrics. Nemo then halts the ex-
ecution of the job and uses the message to trigger a corresponding runtime optimization pass,
which we describe in Section 3.2. The IR DAG also supports safe deletion for any of the inserted
utility vertices.

The annotation methods configure the scheduling and communication of the vertices and
edges by annotating them with specified execution properties. Table 1 specifies nine execution
properties. For scheduling, we have execution properties for deciding how, where, and when to
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schedule tasks. Parallelism and SpeculativeCloning configure how many tasks to schedule.
ResourceSite and ResourcePriority specify where to schedule the tasks. ResourceAntiAffin-
ity specifies the group of tasks that should be scattered around different executors, when specific
tasks are allocated with abnormally large sizes of partitions, for instance. ResourceLocality con-
figures whether to consider the locality of the tasks while scheduling to reduce the communication
cost. ScheduleGroup specifies the order of execution for the vertices, so they are executed in the
specified sequence. DataFlow determines whether or not to schedule source and destination tasks
concurrently. In the case for data communication, we enable the configurations for the medium to
store intermediate data with DataStore, the persistence method with Persistence, and the data
partitioning strategy with NumPartitions and PartitionSets. CacheID indicates the ID of the
cache data to identify and find the cached data. Compression configures the compression method
to use for reducing the network overhead during the communication.

Combinations of different execution properties can express optimizations that require signifi-
cant efforts to implement with low-level runtime policy interfaces. For example, we can config-
ure upfront task cloning with a persistent in-memory data shuffle that pushes data eagerly from
transient resources to reserved resources, through simply annotating SpeculativeCloning with
a threshold, ResourcePriority with appropriate transient or reserved resources, Persis-
tence to discard, DataStore to memory, and DataFlow property to push on the two vertices and
the shuffle edge that connects them. The IR DAG also supports looking up the execution properties
annotated on vertices and edges. Producing the same outcomes through modifying the runtime
components would require significant effort and care, as the modifications require deep under-
standing of how runtime components interact with each other, as well as ad hoc modifications on
each of the components for the different designated requirements of the optimization.

3.1.3 Ensuring Correctness. The predefined reshaping methods ensure correctness, because
Nemo connects the newly inserted utility vertex with existing vertices without changing the com-
putational logics. As shown in Table 1, only the outputs of the Relay and Reshuffle vertices are
consumed by existing vertices, and these outputs are equivalent to the data that the existing ver-
tices originally consume, producing identical results with or without the inserted vertices. The
other utility vertices, however, do not reach data sinks and thus do not affect the final results
that the IR DAG produces. When a utility vertex is specified to be deleted, Nemo appropriately re-
verts the changes and safely returns to its previous state of the DAG before the insertion. Staying
within the constraints in the reshaping methods, Nemo can guarantee that the computational se-
mantics are kept valid and correct.

The annotation methods ensure correctness through allowing Nemo to simply examine and
configure the execution properties, which affect how data is processed, but not on the input and
the output of the computation itself. For each vertex in the IR DAG, Nemo checks the execution
properties of its neighboring edges and vertices, with the communication patterns of the edges,
and configures the execution properties appropriately. This ensures correctness, as the annotated
execution properties do not use and modify computation semantics [12, 16, 58] inside each vertex
or have direct access to the control messages and data elements in the runtime. Instead, execution
properties simply control the way the application is scheduled and how the data is transferred
during the execution runtime, without incurring any effect on the correctness of the application.

Nevertheless, there are several dependencies between the execution properties and require-
ments for individual execution properties that need to be followed for the execution to be made
possible with the configurations. Although the dependency requirements may seem obvious for
the experts who understand the runtime execution, it would be prone to mistakes if used negli-
gently without such knowledge. To prevent such mistakes, Nemo is designed with multiple rule-
based integrity checkers that can be extended to additional conditions regarding the execution
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properties and communication patterns. For each vertex in the IR DAG, Nemo integrity checker
examines the execution properties of the vertex and its neighboring edges and vertices, along with
the communication patterns of the edges.

For example, Nemo checks that PartitionSets and NumPartitions are only set on shuffle
edges. Nemo also checks that the sets included in the PartitionSets are disjoint and together
contain all offsets for the NumPartitions to read each partition exactly once. Sometimes, execu-
tion properties have requirements on the given conditions. The Parallelism property is required
for each vertex to set the number of parallel tasks to schedule for each of the computations, and
it has to be configured with the same number within the sets of vertices that are connected with
one-to-one edges. Also, ScheduleGroup property should be set with appropriate values, so the
execution can be scheduled while preserving the topological order, and not the other way around.
However, Nemo intentionally leaves some execution properties unchecked when they do not need
to be checked. For instance, the Persistence property has no dependency, as discarded interme-
diate data can always be recomputed from the source data when needed and does not incur cor-
rectness issues. Likewise, the DataLocality property also has no dependency, as data can always
be retrieved from remote executors if they are not locally available.

The integrity checker runs after each optimizations to check that each of such conditions and
rules are met after each modifications on the IR DAG. Each of the integrity checks is designed
to check for its designated conditions, such as those mentioned in the previous paragraph, while
topologically traversing the IR DAG. In addition, users are also given the liberty to utilize other
methods to perform actions outside the boundary of our provided APIs shown in Table 1 for de-
signing new optimizations or introducing new execution properties. However, in such cases, it is
the role of the optimization developers to integrate the additional rules to check for in the integrity
checker to guarantee the application correctness. Since we keep the responsibilities of ensuring
correctness of the new optimizations on the developers, IR DAGs could break due to unforeseen
consequences of the optimizations. In such cases, one could fix the optimizations after detecting
the problem, or one could simply revert the IR DAG to the state before the problematic optimiza-
tion for the application to correctly execute.

Moreover, our transformation methods ensure correctness even when dynamically invoked in
the midst of the IR DAG execution. As the IR DAG is decoupled from the underlying runtime, Nemo
ensures correctness by controlling when to apply the transformations on the IR DAG during run-
time. Specifically, we define that a vertex is being executed when its tasks are being executed, and
an edge is being executed when its source or destination vertex is being executed. First, if the trans-
formed vertices and edges have not yet been executed, then we apply the changes immediately so
the changes are applied on the actual execution. Second, if they are in the middle of being executed,
then we delay applying the changes until the executions are finished to ensure correctness. Third,
if they have already finished execution, then we apply the changes immediately so the changes
are applied and used when they are re-executed due to reasons such as system faults.

3.1.4 Supported Applications and Runtimes. As mentioned earlier, the current design of the IR
DAG supports data-processing applications that can be represented as a DAG of data-parallel and
deterministic operators that process bounded data. Many real-world applications, including Beam
and RDD batch applications and also higher-level domain-specific applications such as machine
learning and SQL applications, meet this assumption. The current IR DAG would need to be ex-
tended to support other types of applications, such as those that have cyclic dependencies and
process unbounded data [28].

The IR DAG assumes an underlying distributed runtime that supports configuring and apply-
ing utility vertices and execution properties. Existing runtimes can be enhanced to provide full
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support for the IR DAG optimizations through introducing additional features. For example, new
data channels in addition to the existing ones (FIFO, File, TCP Pipe) can be introduced in Dryad [15]
to provide support for various combinations of the DataStore, DataFlow, and Persistence execu-
tion properties. Similarly, a feature to dynamically add computations to a running application can
be introduced in Tez [37] and the Spark runtime [44] to apply utility vertices inserted at runtime.

3.2 Optimization Passes

Nemo optimization passes aim to provide the desired user-defined policy abstraction P . A pass is a
function that receives an input IR DAG and produces a transformed IR DAG. We first describe the
default settings that Nemo provides. We then describe how to develop and compose passes and
how Nemo applies the given passes on the IR DAG using our examples.

3.2.1 The Default Pass. If the user simply wants to execute the application without applying
any particular optimization designed for a specific use case, then they can choose to run the appli-
cation with the default policy that configures execution properties with the default settings for the
runtime execution. The default optimization passes can also be used in parts of the optimization
that the user does not wish to particularly optimize. In the default parallelism optimization pass,
Nemo first determines the number of partitions of the initial datasets (stages) based on the default
number of partitions from the input source (e.g., HDFS). Spark either uses the default parallelism
value set by the user configurations, or the largest number of partitions from the upstream RDDs
including the source RDD, and uses it throughout the application. Likewise, Nemo also takes the
largest partition number from the upstream datasets, but also provides the option to reduce the
number of partitions by a specified factor upon each shuffle operation (e.g., by half), as shuffle op-
erations often reduce the amount of the dataset with combine and reduce operations. One-to-one
data dependencies are processed across the computations in memory, where the data is discarded
after each usage. The data within shuffle and broadcast dependencies are stored and transferred
on local disks, where Nemo persists the data on the disk under the default settings. We use the
LZ4 algorithm for data compression by default and use the default Java serializer/deserializer for
the serialization/deserialization.

Upon scheduling, Nemo traverses the IR DAG in a topological order and distinguishes the stages
that can be executed in parallel from those that have dependencies on the outputs of other stages.
By doing this, Nemo keeps track of the list of tasks that can be scheduled at a particular point of ex-
ecution and those that can be executed after the already scheduled tasks. While scheduling, Nemo
takes the resource locality into consideration, meaning that it schedules tasks on the executors
where each of its input data reside, as long as the available resources allow them to be.

3.2.2 Developing and Composing Passes. We now describe the rationale and the algorithm for
several example custom passes to demonstrate how to develop and compose new passes for spe-
cific goals. Users can write two types of passes: compile-time and runtime passes. Compile-time
passes take an IR DAG as its input and are run prior to the actual job execution. Runtime passes
additionally receive a message produced by a MessageGenerator vertex that triggers the runtime
pass during job execution.

Each pass is composed of algorithms that utilize the IR DAG transformation methods based
on the conditions defined in the pass. One can observe the execution properties of the DAG via
the get method and set specific execution properties based on the conditions derived from the
observations. Moreover, if required, then one can finalize an execution property to ensure that no
more overriding changes are made on the execution properties set.

Geo-distributed data analytics: We aim to cope with the low and variable capacity of WAN
links when processing data that are geographically distributed [14, 30, 47, 48]. To reduce network
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bottlenecks, we formulate the problem of placing computations to geographically distributed sites
as a linear program (LP), similar to specialized scheduler extensions like Iridium [30]. Here, we
use bandwidth information and data size estimations. We also use an off-the-shelf linear solver
library, since Nemo allows using external libraries when writing a pass. While the entire optimiza-
tion consists of a total of 177 LoC (lines of code) in Java (including imports), the pseudocode of
this algorithm is as follows:

CompileTimePass GeoDistPass(irdag):
solution = solveLP(bwInfo(), sizeEstimates(irdag)) // solve linear problem
for v in irdag.vertices:
v.set(newResourceSite(solution.get(v))) // set new ratio

Harnessing transient resources: We aim to reduce recomputation costs when using transient
resources that are cheap but frequently evicted [34, 35, 39, 52, 54]. Based on the communication
patterns, we identify operations that incur large recomputation costs and place them on reserved
resources. We place the other operations on transient resources. We also quickly move intermedi-
ate data produced on transient to reserved resources. This applies key scheduling and communica-
tion optimizations employed in specialized runtimes like Pado [54]. While the entire optimization
consists of a total of 85 LoC in Java, the pseudocode of this algorithm is as follows:

CompileTimePass TransientResourcePass(irdag):
for v in irdag.vertices.topologicallySorted(): // for all vertices
if (allOneToOneFromReserved(v.inEdges)
|| !isOneToOne(v.inEdges)): // from reserved or has complex dependency
v.set(ResourcePriority.Reserved) // set as reserved
else: // from transient or has simple dependency
v.set(ResourcePriority.Transient) // set as transient
for e in v.inEdges:
if fromTransientToReserved(e.src, v):
e.set(DataFlow.Push) // push data from transient to reserved

Large-scale data shuffle: We aim to reduce random disk read overheads that can grow quadrat-
ically with data size when shuffling data, similar to specialized shuffle systems such as Sailfish [32]
and Riffle [57]. We insert a Relay vertex to specify shuffling data in memory as soon as produced
and writing the data as-is to a local disk. We also ensure that the in-memory data are discarded
once transferred to avoid running into out of memory errors. Following computations sequentially
read the data from the local disk, after the shuffle completes. While the entire optimization consists
of a total of 55 LoC in Java, the pseudocode of this algorithm is as follows:

CompileTimePass LargeShufflePass(irdag):
for e in irdag.edges.filter(isShuffleEdge()): // for all shuffle
rv = newRelayVertex()
irdag.insert(rv, e) // insert relay vertex that performs group by key
rv.inEdge.set(DataFlow.Push) // push sorted data
rv.inEdge.set(DataStore.Memory) // on memory
rv.inEdge.set(Persistence.Discard) // discard after pushing
rv.outEdge.set(DataFlow.Pull) // pull the grouped data
rv.outEdge.set(DataStore.Disk) // write to disk afterwards

Mitigating data skew: We aim to assign the same amount of data across parallel computations
to prevent stragglers. We first set the number of partitions for the data to be shuffled. We then insert
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a MessageGenerator vertex with a function for obtaining the set of data partition sizes. We also
ensure that the shuffle receiver is executed after the the shuffle sender and the MessageGenerator
vertex complete, at which point we will have obtained the statistics and optimized the execution
of the shuffle receiver. While the entire optimization consists of a total of 76 LoC in Java, the
pseudocode of this algorithm is as follows:

CompileTimePass SkewCTPass(irdag):
for e in irdag.edges.filter(isShuffleEdge()): // for all shuffle
e.set(newNumPartitions(e)) // set the number of partitions
e.set(DataFlow.Pull) // set as pull
irdag.insert(newOptVertex(), sizeFunction(), e) // insert msg generator

At runtime, when the MessageGenerator vertex completes and makes the set of size numbers
available, we partition the set into subsets such that the sum of the numbers in the subsets are as
equal as possible. We then assign each subset to a distinct shuffle receiver task. While the entire
optimization consists of a total of 125 LoC in Java, the pseudocode of this algorithm is as follows:

RunTimePass SkewRTPass(irdag, message): // message with skew info
subsets = partition(message) // repartition based on info
message.edge.set(newPartitionSets(subsets))

We have shown a few example passes to demonstrate how a pass can be designed and built.
While the methods that we provide enable users to safely modify and optimize the job execution,
users may utilize other Java methods at their own risk and perform further optimizations that
reconstruct DAG structures, such as loop optimizations and operator fusion. Such optimizations
could also be extended by the users to optimize applications to iterate until convergence, to dynam-
ically adjust resources, such as adding or removing executors from the pool of available containers
for the data processing workload, depending on the specific use case of the application.

Finally, users can organize and package multiple relevant passes to build an optimization policy
that performs an optimization for a specific environment, like the following example that simul-
taneously handles large shuffle and data skew. When registering a runtime pass, it requires spec-
ifying a compile-time pass that inserts MessageGenerator vertices, which produce the message
containing the runtime information and trigger the runtime passes that leverage the information.

policyBuilder.register(LargeShufflePass) // register CTPass
policyBuilder.register(SkewRTPass, SkewCTPass) // register RTPass
policy = policyBuilder.build() // build policy composed of the passes

3.2.3 Applying Passes. Given an IR DAG and a policy composed of passes, users are given the
choices of selecting one of the optimization policies provided by Nemo to apply for their use case,
to develop their own optimization policy themselves or to simply run the application using the
default policy. Whichever way they choose, Nemo first applies the compile-time passes on the
IR DAG in the same order as they were registered in the policy. After all compile-time passes
are applied in their order, the optimized IR DAG is executed. As the execution progresses, each
MessageGenerator vertex completes execution and produces a message. For each message, Nemo
runs the corresponding runtime pass to transform the IR DAG. Nemo serially runs the runtime
passes for the different messages.

After applying each pass, Nemo checks whether the IR DAG produced by the pass is correct
with the integrity checkers, as described in Section 3.1.3, and also whether the pass encounters
any conflicts with its previous passes. A conflict occurs when a pass overwrites the value of an
execution property set by a previous pass to a different value, or deletes a utility vertex inserted
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Fig. 4. A policy composed of the LargeShufflePass and the TransientResourcePass and another policy

composed of the LargeShufflePass and the SkewCompileTimePass are applied on an input IR DAG.

by a previous pass. Nemo throws an error and refuses to execute in case of a check failure after
running a compile-time pass. Upon a check failure of a runtime pass, Nemo just ignores the IR DAG
output by the pass and logs the failure, as stopping an already running application can be costly.

Figure 4 shows how Nemo runs two example policies. Both policies first apply the
LargeShufflePass, which inserts a Relay vertex between V1 and V3 and annotates E5 and
E4. The first policy then applies the TransientResourcePass, which performs annotations
without any conflict with the previous pass. The second policy applies the SkewCTPass, which
inserts a MessageGenerator vertex and tries to annotate E5 with the pull DataFlow. However,
the SkewCTPass encounters a conflict as the push DataFlow has already been set for E5 by the
previous LargeShufflePass.

Fundamentally, the conflict in the second policy occurs because the LargeShufflePass tries
to shuffle data eagerly in memory, whereas the SkewCTPass tries to use the statistics of the data
before the downstream computations start to consume the data. If undetected, then this conflict
results in a pull-based in-memory data shuffle, where the outputs of all V1 tasks are stored in
memory before the Relay tasks start fetching the data. Although this configuration avoids disk
seek overheads and also handles data skew at the same time, it can cause out of memory errors
for large input data.

Because Nemo detects such conflicts explicitly, users can quickly detect and address the issue.
In this case, we can solve the conflict by designing a new SkewSamplingPass that avoids the con-
flict with the LargeShufflePass. This new compile-time pass clones the IR DAG using Sampling
vertices and first runs the clone to obtain the statistics of sampled data. Our third policy with
the LargeShufflePass and the SkewSamplingPass can be applied together on the IR DAG to
optimize for both large data shuffle and data skew. However, compared to the SkewCTPass, the
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Fig. 5. Nemo runtime extensions (bold) apply optimizations in a distributed runtime.

SkewSamplingPass incurs the cost of executing additional vertices and using the statistics of sam-
pled data rather than the entire data.

Next, we describe how these various transformations of the IR DAG are reflected in the dis-
tributed execution.

3.3 Nemo Execution Runtime

We use a Nemo-compatible runtime depicted in Figure 5 to describe how the Nemo runtime ex-
tensions apply the IR DAG transformations in the distributed runtime. Upon launching a job, the
runtime starts a master process and executor processes on user-specified resources. Within the
master, the NemoScheduler extension operates on the task DAG abstraction that the runtime pro-
vides for scheduling tasks to executors. Executors spawn a thread to run each scheduled task and
use the NemoChannel extension to communicate data between the tasks. In the rest of the section,
we describe how such extensions actually execute the optimizations.

3.3.1 Overview. The Nemo execution runtime keeps track of the pool of executors launched
based on the user-specified resources. Upon receiving the optimized IR DAGs, the Nemo master
merges multiple vertices connected with one-to-one dependencies into stages and divides each
stage into parallel tasks to distribute them among the pool of executors. Once tasks are scheduled
to an executor, they are executed to consume and process each of their partitions of input data.
The statuses of the tasks are tracked by the Nemo master, and the metrics are collected in the
MetricStore.

The callback handlers in the Nemo master take care of the changing statuses of the tasks. When
a task asks the master to put the job on hold to perform dynamic optimization, the master does so
and re-schedules the job on the executors based on the updated execution plan. Upon failures of
the tasks, Nemo master provides fault tolerance by restarting the failed tasks to recover from the
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failures and evictions. Also, to mitigate the effects of straggler tasks, Nemo also provides specula-
tive execution by executing cloned tasks in parallel.

During the execution, the Nemo execution runtime provides support for different libraries and
features by providing the modules specified for the different purposes. For example, Nemo provides
different modules to use different storage media for the intermediate data, not only limited to
memory and disk, but also to remote storage memory and off-heap memory.

3.3.2 Scheduling and Executing Tasks. First, we set up the initial task DAG using the IR DAG op-
timized by compile-time passes (1). Here, we merge neighboring IR vertices into the same stage as
much as possible to minimize the data communication overheads within the set of tasks, while con-
sidering communication patterns of the IR edges and the related execution properties, such as the
Resource properties and the Parallelism property. Whenever a task enters a new state, it notifies
the master about its updated state, which has callback handlers that provide different mechanisms
for each of the state changes. In case of a MessageGenerator vertex, we register its specific callback
handler to collect the results produced by the corresponding tasks from executors as a message.

Each of the tasks are then scheduled to an executor in the topological order. Upon initiating a job,
we select the candidate tasks for scheduling, which are the source tasks and their children tasks
connected with the push DataFlow (2). For each candidate task, we select candidate executors by
comparing the corresponding Resource properties of the task with the information on the execu-
tors. We then schedule the task to a candidate executor with the least number of running tasks (3).

When a task emits a data element, we write it to the corresponding DataStore implementation,
creating a data block when all data elements for the channel are written (4). If the corresponding
edge is shuffle, then the block is partitioned into NumPartitions. When a task reads input data ele-
ments, we look for the locations of the input data blocks, blocking the call when looking for blocks
that are not yet available. We fetch the input data elements from the local and remote DataStores
while applying PartitionSets for shuffle edges (5–6). Once all of the downstream tasks success-
fully read a block, we decide to either keep or discard the block based on the Persistence property.

3.3.3 Metric Collection. During the job execution, Nemo collects and provides metrics in three
different levels: jobs, stages, and tasks. As mentioned, jobs are split into stages, each of which is
a set of parallel tasks that each perform a set of computations on an executor. On the job level, it
manages metrics such as the total size of input data, job duration, the IR DAG structure, the exe-
cution properties, and the job state transition between ready, executing, complete, and failed
states. Stage metrics simply keep track of the completion times for the stages, while task metrics
keep track of the most important fine-grained information of the workload. Task metrics include
the task duration, the executor the task is scheduled to, the scheduling overhead, the number of
scheduling attempts, as well as the size and time metrics of reading and writing and serialization
and deserialization of the task input and output data. Task states include on_hold and should_-
retry in addition to the ready, executing, complete, and failed states to indicate states related
to dynamic optimization and fault tolerance, relatively, which we elaborate in the following subsec-
tions. Task metrics are collected in each executor and are sent to the master upon each completion
of the tasks. Job and Stage metrics are collected and updated on the master by the callback han-
dlers that are implemented on the master. The metric collection occurs along the execution and
incurs overheads on a milliseconds scale. The metrics can be stored as a JSON file or on a relational
database according to the user preference.

3.3.4 Dynamic Optimization. To deal with problems that occur dynamically, Nemo provides
runtime passes that enable for the dynamic modifications of the task DAG based on the metrics
collected during runtime. Such metrics are usually represented as a message, as such runtime
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metrics must be aggregated from the executors to a central master in advance to the dynamic
optimization. Such messages are produced by a MessageGenerator vertex, and upon receiving
such messages in the callback handler (7), the Nemo master postpones scheduling new tasks in
the NemoScheduler (8). Once the tasks are put on hold, Nemo invokes the corresponding runtime
pass (9), rewrites the task DAG based on the new IR DAG output by the runtime pass at the correct
timing described in Section 3.1.3 (10), and resumes scheduling starting from the following tasks.
Then, the new tasks, which are adjusted and optimized by the runtime pass, are executed with the
optimizations applied.

3.3.5 Fault Tolerance. Faults can occur in the executors for a variety of reasons. Misconfigura-
tion, inefficient queries, excessive concurrency, and insufficient resources can all lead to various
problems, mainly to out-of-memory (OOM) conditions that lead to executor failures and abrupt
discontinuation of workloads.

To deal with such problems during the runtime, if not handled by the optimization passes, then
Nemo provides methods to recover from such failures. While Nemo keeps track of the tasks and
the workload with the runtime metrics, Nemo schedules new tasks upon learning about failures on
task progress and executor status in the callback handler to restart the failed tasks to recover from
failures and evictions (7–8). Upon the rescheduling of the failed tasks, Nemo executors compute
for the lost data with the newly scheduled tasks and resume the progress from where it has left
off. Specifically, it re-schedules the tasks that are required to recompute the lost intermediate data
and topologically schedules the rest of the tasks of the workload to perform the rest of the job. As
tasks are regenerated and rescheduled progressively, instead of being transferred and relaunched
on healthy executors, it incurs trivial rescheduling and context switching costs. In the meanwhile,
to prevent wasting computational cycles on repetitive recomputations, Nemo supports caching to
enable checkpointing for frequently accessed intermediate data on its storage resources.

To deal with master failures, Nemo supports resource manager restart mechanisms on YARN,
which restarts the master based on reloading the states from a pluggable state-store containing
the checkpointed master status and metadata.

3.3.6 Speculative Execution. Straggler tasks, inefficient shuffle operations, and excessive
garbage collection in specific executors contribute to major slowdowns of job execution. In ad-
dition to task faults, such slowdowns have major impact on the system performance, leading to
inefficient usages of the computational resources and time, leading to consequences that can turn
out as even more fatal than executor faults.

To deal with the straggler tasks, Nemo clones tasks based on the SpeculativeCloning prop-
erty and executes backup tasks. While there exist several methods to distinguish straggler tasks
from others, sampling approach is one of the approaches that enables for the estimation of the task
completion times of parallel tasks. For instance, if a stage is split into n parallel tasks for the exe-
cution, we could sample a small portion of the n parallel tasks to derive the duration of the entire
stage. The backup tasks are executed in parallel on other executors, which might not possess the
problems that the straggler executors suffer from. Upon the completion of the tasks, the other set
of tasks is canceled and the job continues on its execution.

3.3.7 Simulator. On top of the Nemo runtime, Nemo also provides a separate scheduler imple-
mentation that enables for a simulation of a workload, which follows the exact, same procedure
as the runtime execution except for the actual computations and I/O operations. Jobs are split
into stages and tasks and scheduled as they would originally have been in a cluster of multiple
machines. Through the simulation of the distributed computational environments, the duration of
the workload can be derived from the predicted task completion times. The task completion times
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could be represented as a number portraying the average task duration or as a distribution where
the predicted task completion time could be extracted from the distribution. With the simulator,
Nemo enables users to predict the workload execution and to fix inefficient queries ahead of the
execution without having to wait for the actual execution of the workload.

3.3.8 Integration of Remote Storage Memory. With the advancement of high-performance stor-
age and fast network, data processing has been able to utilize such technologies to provide speed
enhancement in executing data processing queries. Although using disaggregated memory in some
cases could lead to extra serialization overheads, such as when used too frequently for small data,
in other cases, disaggregated memory can bring advantages over the classic local memory. Disag-
gregated memory makes memory resource management much easier and efficient in large datacen-
ters, bringing down the cost for the management and resource distribution. Utilizing disaggregated
memory can bring down the memory contentions in local memory, which may lead to OOM errors
and enable for more memory to be utilized for computation rather than as a storage for large inter-
mediate data, while keeping the overheads low. Such characteristics could be leveraged to off-load
skewed data with popular keys to disaggregated memory to reduce local memory pressures.

Apache Crail [41] is one of the libraries that facilitates the usage of heterogeneous storages like
DRAM and NVMe flash with the support of advanced network technologies like RDMA. On top
of Apache Nemo, we have implemented support for Crail, through connecting the Nemo runtime
with the Crail adapters and creating a new DataStoreProperty called CrailFileStore, in ad-
dition to the existing properties such as LocalFileStore and MemoryFileStore. This facilitates
the usage of Crail file system by making it as simple as just annotating the IR DAG edge with the
appropriate execution property through the provided API, for storing the intermediate data, and
enjoy the benefits of the new technologies.

3.3.9 Utilization of Off-heap Memory. While many data processing systems, including
Spark [44], Flink [42], and Nemo runtime are implemented to run on the Java Virtual Machine

(JVM), memory management plays a crucial part as such systems store large amounts of data in
memory. Nevertheless, JVM has a major reliance on Java memory management and garbage col-

lection (GC), which are often sub-optimal and pose a major issue in the system performance. To
solve the garbage collection issues, one can use data structures with fewer Java objects, such as
using arrays instead of lists, or use specialized data structures such as Koloboke or fastutil, which
optimize memory usage for primitive types. Another solution is storing data off-heap as Spark
and Flink, which is the region in the JVM that is not handled by the JVM GC algorithms, to handle
memory manually.

Apache Nemo provides the support for using off-heap memory by utilizing the ByteBuffer
object for storing intermediate data in the Nemo runtime and providing a new DataStoreProperty
called SerializedMemoryStore, in addition to the MemoryStore property, which stores objects on
heap. Using the new execution property, similar to how we have used disaggregated memory for
intermediate storage, users can simply annotate the IR DAG edge to indicate where to save the
intermediate data corresponding to the IR edge. During the runtime execution, Nemo internally
keeps track of the metadata of memory chunks that are allocated off-heap.

4 IMPLEMENTATION

We have implemented Nemo and a distributed runtime that is compatible with Nemo in around 32K
lines of Java code. Our Nemo compiler implementation consists of the following three components:
frontend, optimizer, and backend.

The frontend translates applications such as Beam and RDD applications into an IR DAG
(Section 3.1). At present, our frontend provides translation support for all Beam [40] operators and
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a subset of RDD [56] operators such as map, reduce, collect, broadcast, and cache. The main
reason for not fully supporting RDDs is that the current iterator implementation used in Nemo
is not readily compatible with some of the RDD implementations. In the future, we plan to modify
our iterator implementation to address this limitation. The optimizer applies optimization passes
on the IR DAG (Section 3.2). The backend configures the underlying runtime with the optimizer
and the runtime extensions (Section 3.3).

Existing Beam applications can run on Nemo by specifying the Beam PipelineRunner imple-
mentation as our implementation of the runner, NemoPipelineRunner. This can either be done
by simply passing on NemoRunner as a configuration parameter or directly importing it from the
code. The frontend wraps and converts each Beam PTransform in an IR vertex and PCollection
to an IR edge. The frontend also obtains the information regarding the communication patterns
during the translation. For example, it specifies shuffle edges on the incoming PCollections of
the GroupByKey PTransforms.

Similar to Beam, existing RDD applications can run on Nemo with simple modifications to the
lines importing the implementations of SparkSession and SparkContext to our implementations
of the classes. Each RDD becomes an IR edge, and each user-defined function that generates an
RDD becomes an IR vertex. Our frontend also aims to respect all of the user-specified parameters
on RDDs such as parallelism and data caching by setting the execution properties on the translated
IR DAG accordingly.

Our runtime implementation is built on top of Apache REEF [49] and consists of master and
executor processes similar to the Nemo-compatible runtime described in Section 3.3. REEF (Re-

tainable Evaluator Execution Framework) is a library for easily developing execution run-
times on top of different resource managers. A REEF job consists of a single driver that obtains
containers from a resource manager and multiple evaluators that provide runtime environments
on containers. To take advantage of the abstractions provided by REEF, the runtime master runs
as the REEF driver and the runtime executors run as REEF evaluators. Through the integration
with REEF [49], our runtime runs on resource managers such as Apache Hadoop YARN [43], and
Apache Mesos [13].

5 EXPERIMENTAL EVALUATION

We evaluate Nemo on the following three dimensions: First, we evaluate how Nemo applies fine
control under different resource and data characteristics. Second, we evaluate how different com-
binations of optimization passes optimize the same application. Third, we evaluate how the same
Nemo policy optimizes different applications.

We run data-processing applications with different combinations of following resource and data
characteristics: geographically distributed resources, transient resources, large-shuffle data, and
skewed data. We run each application five times, and we report the mean values with error bars
showing standard deviations.

We use h1.4xlarge Amazon EC2 instances, each of which provides 16 vCPUs, 64 GiB memory,
two 2 TB HDDs, and 10 Gbps network. We use different numbers of instances for different exper-
iments. On each instance, one of the two disks is used by a Hadoop Distributed File System [43]
cluster that we set up on the instances, and the other is used as a scratch disk for maintaining
intermediate data. Input datasets are stored in HDFS and fetched by the systems at the beginning
of each job.

5.1 Fine Control

In this experiment, we evaluate how Nemo applies fine control under different resource and
data characteristics. For comparison, we run Spark 2.3.0 [44], because it is an open-source,
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Fig. 6. (a) JCT for different cross-site network bandwidths and (b) the CDF of shuffle read blocked time of

tasks under the high cross-site network bandwidth heterogeneity, where Spark shows a long tail compared

to the others.

state-of-the-art system. We enable any available basic optimizations, like speculative execution,
for our Spark experiments. We also run a specialized state-of-the-art runtime for each deployment
scenario. Specifically, we run Iridium [30] for geo-distributed resources, Pado [54] for transient
resources, and Hurricane [3] for data skew, which already has done its comparisons versus Spark
in their works and has proven that it performs better. We examine the results of Beam applications
on Nemo and Pado, Spark RDD applications on Spark and Iridium, and a Hurricane application
on Hurricane.

We confirm that the baseline performance is comparable for Beam and basic RDD applications
on Nemo. We also confirm that the baseline performance is comparable for Spark and Nemo with
the DefaultPass, which configures pull-based on-disk data shuffle with locality-aware computa-
tion placement similar to Spark. We observe that the overhead of running the compile-time passes
on Nemo is roughly 200 ms for each execution, which is small compared to the entire job com-
pletion time of each of the applications, as you can see in each of the experiments below. We
also measure and report runtime overheads of the Relay vertex, Trigger vertex, and SkewRTPass
throughout this section.

Geo-distributed Resources: To set up geo-distributed resources and heterogeneous cross-site
network bandwidths, we use Linux Traffic Control [2] to control the network speed between in-
stances, as described in Iridium [30]. Each site is configured with 2 Gbps uplink network speed
and a specific downlink network speed between 25 Mbps and 2 Gbps. We experiment with Low,
Medium, and High bandwidth heterogeneity with the fastest downlink outperforming the slowest
downlink by 10×, 41×, and 82×. With this, we use 20 EC2 instances as resources scattered across
20 sites. The compile-time optimization takes about 173 ms on average. To evaluate data shuffle
under heterogeneous network bandwidths, we use a workload that joins two partitions of 373 GB
Caida [5] network trace dataset and computes network packet flow statistics.
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Fig. 7. (a) JCT and (b) ratio of re-completed tasks to original tasks for different mean times to eviction on

transient resources.

The job completion time (JCT) of Iridium, Spark, and Nemo optimized with the GeoDistPass
are shown in Figure 6(a). Spark degrades significantly with larger bandwidth heterogeneity, since
tasks that fetch data through slow network links become stragglers. In contrast, Iridium and Nemo
are stable across different network speeds. Figure 6(b) shows that the cumulative distributive

function (CDF) of shuffle read time has a long tail for Spark compared to Iridium and Nemo.
Iridium and Nemo show comparable performance with similar largest shuffle read blocked times,
although Iridium shows overall better shuffle read blocked times using a more sophisticated linear
programming model.

Transient Resources: Based on existing works [39, 52, 54], we classify resources that are safe
from eviction as reserved resources and those prone to eviction as transient resources. We set up
10 EC2 instances for providing transient resources and 2 instances for reserved resources. When
an executor running on transient resources is evicted, we allow the system to immediately re-
launch a new executor using the transient resources to replace the evicted executor as described
in Pado [54]. To evaluate handling long and complex DAGs with transient resources, we run an
Alternating Least Squares (ALS) [18] workload, an iterative machine learning recommendation
algorithm, on 10 GB Yahoo! Music user ratings data [51] with over 717M ratings of 136K songs
given by 1.8M users. We use 50 ranks and 15 iterations for the parameters. The compile-time
optimization takes about 236 ms on average. By varying the mean time to eviction for transient
resources, we show how systems deal with the different eviction frequencies. The distribution of
the time to eviction is approximated as an exponential distribution, similar to TR-Spark [52].

Figure 7(a) shows the JCT of Pado, Spark, and Nemo optimized with the TransientResource-
Pass for different mean times to eviction. With the 40-minute and 20-minute mean time to evic-
tion, Spark is unable to complete the job even after running for an hour, at which point we stop
the job. The main reason is heavy recomputation of intermediate data across multiple iterations
of the ALS algorithm, which is repeatedly lost in recurring evictions. However, Nemo and Pado
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Fig. 8. (a) JCT for different input data sizes and (b) mean throughput of scratch disks for maintaining inter-

mediate data when processing the 2 TB input data.

successfully finish the job in around 20 minutes, as both systems are optimized to retain a set of
selected intermediate data on reserved resources. Figure 7(b) shows the ratio of re-completed tasks
to original tasks for different mean times to eviction. It shows that Nemo and Pado re-complete
significantly fewer tasks compared to Spark, leading to a much shorter JCT. Nemo and Pado show
comparable performance although Nemo re-completes more tasks, because the tasks that both
systems re-complete are executed quickly and do not cause cascading recomputations of parent
tasks.

Large-shuffle Data: We evaluate how Nemo and Spark handle large shuffle operations using
512 GB, 1 TB, and 2 TB data of the Wikimedia pageview statistics [50] from 2014 to 2016, as the
datasets provide sufficiently large amount of real-world data. We use a map-reduce application
that computes the sum of pageviews for each Wikimedia project. The compile-time optimization
takes about 155 ms on average. We choose the ratio of map to reduce tasks to 5:1, similar to the
ratios used in Riffle [57] and Sailfish [32], and use 20 EC2 instances to run the workload.

The JCT of Spark and Nemo optimized with the LargeShufflePass are shown on Figure 8(a).
Both show comparable performance for the 512 GB dataset, but Nemo outperforms Spark with
larger datasets. To understand the difference, we measured the mean throughput of the disks used
for intermediate data. Figure 8(b) illustrates the mean disk throughput of scratch disks used for in-
termediate data when running the 2 TB workload. Here, a spike in the write throughput is followed
by a spike in the read throughput, which illustrates disk writes during the map stage followed by
disk reads during the reduce stage while performing the shuffle operation. For Spark, the disk
read throughput during the reduce stage is as low as about 10 MB/s, indicating severe disk seek
overheads. In contrast, the throughput is as high as 45 MB/s for Nemo, as the LargeShufflePass
enables sequential read of intermediate data by the following reduce tasks, which minimizes the
disk seek overhead.
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Fig. 9. (a) JCT for different input data skewness and (b) CDF of reduce task completion time when processing

the 30%-Top10 skewed data. Each vertical line in the CDF graph denotes the completion time of the slowest

reduce task.

To measure the overhead of the Relay vertex inserted by the LargeShufflePass before the
reduce operation, we have also run the 2 TB workload on Nemo without the LargeShufflePass.
The reduce operation begins 56 seconds earlier without the LargeShufflePass and the Relay
vertex, where 56 seconds represent 2.05% of the JCT of Nemo with the LargeShufflePass.

Skewed Data: To experiment with different degrees of data skewness, we generate synthetic
200 GB key-value datasets with two different key distributions: Zipf and Top10. For the Zipf dis-
tribution, we use parameters 0.8 and 1.0 with 1 million keys [3]. Datasets with Top10 distribution
have heaviest 10 keys that represent 20% and 30% of the total data size. We run a map-reduce ap-
plication that computes the median of the values per key on 10 EC2 instances. The compile-time
optimization takes about 188 ms on average, and the runtime pass takes about 268 ms on average.
Because this application is non commutative-associative, for evaluating Hurricane, we use an ap-
proximation algorithm similar to Remedian [36] to fully leverage its task cloning optimizations [3].
The Hurricane application also uses 4 MB data chunks and uses its own storage to handle input
and output data, similar to the available example application code.

Figure 9(a) shows the JCT of Hurricane, Spark, and Nemo optimized with the SkewCTPass and
the SkewRTPass. Performance of Spark degrades significantly with increasing skewness. Especially,
Spark fails to complete the job with the 1.0 Zipf parameter, due to the load imbalance in reduce
tasks with skewed keys, which leads to out-of-memory errors. In contrast, both Nemo and Hurri-
cane handle data skew gracefully. In particular, Nemo achieves high performance and at the same
time computes medians correctly without using an approximation algorithm.

Figure 9(b) shows the CDF of reduce task completion time when processing the 30%-Top10
dataset. The CDF for Spark shows that reduce tasks with popular keys take a significant amount
of time to finish compared to its shorter tasks. In contrast, the slowest task completes much quicker
than Spark for Hurricane and Nemo. We can observe that Hurricane processes short-lived tasks
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Fig. 10. JCT for different input data skewness using different data storages for the intermediate data.

alongside with longer tasks with its task cloning optimization, showing an illusion that it performs
better in the bottom 50% of the CDF, but we can see that longer and shorter tasks have balanced
completion times on Nemo with its data repartitioning optimization.

To measure the overhead of the Trigger vertex inserted by the SkewCTPass, we also run the
30%-Top10 workload on Nemo without the SkewCTPass and the SkewRTPass. The reduce operation
begins 35 seconds earlier without the Trigger vertex, where 35 seconds represent 5.52% of the JCT
of Nemo configured with the SkewCTPass and the SkewRTPass.

These results for each deployment scenario show that each optimization pass on Nemo brings
performance improvements on par with specialized runtimes tailored for the specific scenario.

Integrating the Crail Filesystem: Another simple way of dealing with skewed data is to uti-
lize fast data storage during data processing. As shown in Figure 9(a) and Figure 10, default imple-
mentations of general data processing systems based on local memory fail to complete the jobs
from a certain extent of skewness due to OOM errors that occur while using the local memory
as the medium to store intermediate data. Nevertheless, if we use Crail [41], a high-performance
distributed data store designed for fast sharing of ephemeral data, for storing the intermediate
data, then we can reduce the costs from skewed data by overcoming the costs with the fast stor-
age and network performances. For this evaluation, we have simply set the DataStoreProperty
for storing intermediate data to CrailStore, without any other optimizations described above, to
compare only effects of the data store.

As shown in Figure 10, while the default usage of local memory brings the best performance
among the implementations when the level of skewness is moderate, the performance quickly
starts to sharply degrade upon memory pressure caused by the skewness and fails to perform un-
der conditions when the skewness becomes large due to OOM errors. Crail exhibits larger network
costs compared to local memory due to its distributed architecture and is slower under moderate
skewness, but its performance degrades gracefully even towards intensive skewness, as the skew-
ness has much smaller effect on the local memory pressure. Although using disks could also pre-
vent the system from facing OOM errors, we can see that the disk overheads largely exceed the
JCTs of the default and Crail-integrated Nemo. This particular experiment is performed on GCP
Compute Engine VM Instances with the same specifications as our other experiments (10 instances
each with 16 vCPUs and 64 GiB memory).

5.2 Composability

We now evaluate combinations of different optimization passes. Table 2 summarizes the results.
Skewed Data on Geo-distributed Resources: In this experiment, we use the same 1.0-Zipf

workload for the skew handling experiment in Section 5.1, because the workload showed the
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Table 2. JCT When Using Different Combinations of DefaultPass (DP),

GeoDistPass (GDP), SkewCTPass (SKP), TransientResourcePass (TP),

LargeShufflePass (LSP), and SkewSamplingPass (SSP)

Skewed data on

Geo-distributed

Large Shuffle on Transient Large Shuffle with Skewed

DP: OOM DP: 100m DP: OOM
GDP: OOM TP: OOM LSP: OOM
SKP: 27.2m LSP: 100m SSP: OOM

GDP + SKP: 14.9m TP + LSP: 48.2m LSP + SSP: 31.4m

largest load imbalance. We use 10 EC2 instances representing geo-distributed sites with heteroge-
neous network speed in between 25 Mbps to 2 Gbps. Here, DP and GDP run into out-of-memory
errors due to the reduce tasks with skewed keys that are requested to process excessively large
portions of data. SKP and GDP+SKP both successfully complete the job with the skew handling
technique in SKP, but GDP+SKP outperforms SKP by also benefiting from the scheduling optimiza-
tions in GDP.

Large Shuffle on Transient Resources: For this experiment, we use the same 1 TB workload
for the large shuffle experiment in Section 5.1, to use sufficiently large data that incurs disk seek
overheads. In this case, we use 10 reserved instances and 10 transient instances with the 20-minute
mean time to eviction setting.

Most notably, DP and LSP fail to complete even after 100 minutes, at which point we stop the
job and TP runs into out-of-memory errors. We have observed that heavy recomputation caused
by frequent resource eviction significantly slows down the DP and LSP cases. We have also found
out that the LSP optimization makes the application much more vulnerable to resource evictions
compared to DP. The main reason is that with LSP, eviction of a single receiving task in the shuffle
boundary leads to the entire recomputation of the sending tasks of the shuffle operation to com-
pletely re-shuffle the intermediate data in memory. In contrast, DP does not need to recompute
shuffle sending tasks whose output data are not evicted and stored in local disks. TP by itself also
is not sufficient, as it leads to out-of-memory errors while pushing large shuffle data in memory
from transient resources to reserved resources.

TP+LSP is the only case that successfully completes the job by leveraging both optimizations
in TP and LSP. With TP+LSP, the job pushes the shuffle data from transient to reserved resources
and also streams them to local disks on reserved resources that are safe from evictions. This al-
lows TP+LSP to handle frequent evictions on transient resources and also to utilize disks for storing
large shuffle data with minimum disk seek overheads. However, TP+LSP incurs the overhead of
using only half of the resources (transient or reserved) for each end of the data shuffle. As a result,
the JCT for TP+LSP with transient resources is around twice the JCT for LSP without using tran-
sient resources, which is displayed in Section 5.1. Nevertheless, we believe that this overhead is
worthwhile, taking into account that transient resources are much cheaper than reserved resources
from the perspective of datacenter utilization [35, 54].

Large Shuffle with Skewed Data: For this experiment, we generate a synthetic key-value
dataset with a skewed key distribution that is around 1 TB in size, as the datasets used in Section 5.1
for skew handling are not sufficiently large to incur disk seek overheads. This dataset has the
distribution where heaviest 20 keys represent 30% of the total data size. Using this dataset, we run
the same application that we have used for the skewed data experiment in Section 5.1 on 20 EC2
instances.

In this experiment, only SSP+LSP successfully completes the job, whereas all other cases run into
out-of-memory errors. DP and LSP fails to complete the job, due to particular tasks assigned with
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excessively large portions of data, incurring out-of-memory errors. SSP by itself also runs into out-
of-memory errors although it repartitions data across the receiving tasks of the shuffle boundary.
We have observed that with large data size, the absolute size of the heaviest keys is significantly
larger compared to smaller scale experiments with skewed data shown in Section 5.1. Without the
LSP optimization, this problem is combined with random disk read overheads that degrade the
running time of the shuffle receiving tasks, leading to out-of-memory errors. In contrast, SSP+LSP
successfully completes the job by leveraging both of the optimizations from SSP and LSP.

These various results confirm that Nemo can apply combinations of distinct optimization passes
to further improve performance for deployment scenarios with a combination of different resource
and data characteristics.

5.3 Reusability

Finally, we evaluate how the same Nemo policy optimizes different applications. As Nemo opti-
mization passes are simply functions that transform IR DAGs to optimized IR DAGs, they can be
freely reused on an arbitrary IR DAG, with an exception on that conflicts between multiple op-
timizations have to be resolved. With this experiment, in addition to different applications used
in prior experiments, we apply the policies on several ad hoc BeamSQL [40] TPC-H [46] queries

(Q) with different scale factors (SF), as they are widely used for benchmarking distributed data
processing systems. Here, 1 SF is approximately 1 GB of input data. We specifically use workloads
that handle smaller input and intermediate data compared to the previous experiments and thus
are much less affected by the issues that occur in the specific scenarios such as disk-seek overheads
and resource evictions.

First, using 20 nodes with the LargeShufflePass, we observe 20.8 minute JCT for SF1000 Q3
that is 25% smaller than the JCT without the optimization, but no significant performance im-
provements for SF1000 Q14. We also observe 41.1 minute JCT for SF3000 Q12 that brings 22%
performance improvements. Second, we do not observe meaningful performance improvements
for SF100 Q4 and Q13 with the SkewCTPass on 10 nodes, as the dataset is not skewed. Finally, using
eight transient nodes with the 10-minute expected eviction rate and two reserved resources, we
apply the combination of the TransientResourcePass and the LargeShufflePass on SF100 Q4
and Q14. For the respective queries, we observe JCTs of 8.2 minutes and 3.4 minutes, which are
smaller than when not applying the optimizations by 9% and 15%.

These results as well as the results of different workloads in previous experiments confirm that
the same optimization passes on Nemo can speed up different workloads instantly, with varying
degrees of effectiveness.

6 RELATED WORK

Nemo builds on many years of research in dataflow processing, relational database, and compiler
optimizations. Nevertheless, we believe the set of tradeoffs we have chosen to design the IR DAG,
optimization passes, and runtime extensions for optimizing distributed dataflow processing makes
Nemo a unique system.

Dataflow processing: Nemo differentiates itself from the existing application-level [17] and
runtime-level [15, 17, 37, 44] approaches to dataflow scheduling and communication optimizations
by taking a middle-ground approach. Nemo provides a policy interface that transforms an inter-

mediate representation (IR) of applications to express indirect but fine control over distributed
scheduling and communication.

Our decoupled system design and our DAG-based IR are similar to Musketeer [10]. The fron-
tend design of transforming different applications written in different programming interfaces to
an IR is quite similar. However, our work is complementary to Musketeer, as Musketeer focuses on
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enabling the execution of its IR graph on a range of different execution runtimes, to dynami-
cally map its IR to the runtimes where the application runs faster, while we focus on providing
fine control for optimizations over the physical scheduling and communication with our IR DAG
abstraction.

The SparkSQL Catalyst optimizer [1] takes as input a SparkSQL application and outputs a Spark
RDD application, which Nemo can take as input. Compared to Nemo, Catalyst has more informa-
tion about application semantics, but has less fine control over scheduling and communication
(e.g., speculative task cloning).

Recently proposed dynamic query optimizers [24, 25] for distributed dataflow processing run-
times operate on high-level logical plans for SQL queries. Leveraging the semantics of SQL queries
and the runtime information, these optimizers focus on choosing an optimal logical plan, for ex-
ample, by finding an optimal join order. Nemo operates on a lower-level IR DAG that supports
general dataflow processing applications and provides the methods to configure scheduling and
communication methods of each data-parallel operation in the applications.

Weld [29] takes as input code that composes imperative libraries such as Pandas [26] and
Numpy [38], creates a combined Weld IR program, and outputs optimized assembly code using
LLVM. Weld can reduce data movement overheads across such imperative libraries, but it is not
designed to optimize distributed scheduling and communication like Nemo.

Works similar to those proposed by Elseidy et al. [9] suggest new operators, such as a new join
operator that is scalable and adaptive to online statistics, that performs task-level optimizations.
Nemo performs optimizations on top of the existing operators through annotations, instead of
developing a new one, by defining the runtime actions for scheduling and communication on the
IR DAG, as well as by inserting new control logics by inserting Nemo utility vertices.

SpongeFiles [8] suggest its mechanisms to store large chunks of data in different locations in the
cluster and to spill the data to the nearest location with sufficient capacity (local memory/remote
memory/local disk/remote disk, in the given order). While Nemo currently provides support for
local memory and disks, it can be extended to Crail [41], SpongeFiles [8], and other storages to
improve on its performance. Such works can be supported and added on to our list of optimizations
for further improvements.

Relational databases: Many of the optimizations in Nemo, such as parallelization and dis-
tributed scheduling optimizations, can be traced to research in parallel databases [6, 11]. Nemo
enables expressing and composing various types of such optimizations for distributed dataflow
processing applications by introducing a policy interface that provides fine control and at the
same time ensures correctness.

Our idea of annotating operators with execution properties is similar to using query hints in
relational databases to influence the optimizer [4]. Nevertheless, these works focus on restricting
the search space of SQL query execution plans, whereas Nemo focuses on tuning the scheduling
and communication of dataflow processing applications.

Recent database systems like SageDB [19] enables the DB to take a learning-based model to
specialize its workload on the data distribution, workload, and hardware environments to tune
DB components such as index structures, sorting algorithms, and the query executor. In Nemo,
instead of replacing the core components with the learned components in our system, we aim to
optimize the scheduling and the communication mechanisms within the boundary of our APIs
and the runtime modules that we define and implement, while it can be our future work to take a
learning-based approach to automatically generate a policy for scheduling and communication.

Compilers: Our approach of expressing optimizations as passes that transform an IR is sim-
ilar to LLVM [22]. However, in contrast to the LLVM IR that represents assembly code, the
Nemo IR explicitly captures the dependencies and the communication patterns of coarse-grained,
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data-parallel operations. This enables passes on Nemo to express various distributed scheduling
and communication optimizations.

Duboscq et al. [7] suggest a graph-based IR for speculative optimizations in a dynamic compiler,
where it deoptimizes the machine code to create an IR to allow dynamic speculative optimizations
for high-level languages in the compiler. In constrast to the approach mentioned above, Nemo op-
timizes the application by annotating the optimized runtime actions on the IR DAG and executing
it as instructed by the Nemo optimizations, instead of by manually optimizing the control flow and
the compiler optimization performance.

Verified compilers, such as CompCert [23], aim to ensure the correctness of optimized assem-
bly code using formal verification methods. Nemo aims to ensure the correctness of optimized
distributed execution of dataflow processing applications by introducing utility vertices and exe-
cution properties that make it simple to ensure correctness.

7 DISCUSSION

Nemo provides a programming interface for building correct, reusable, and composable optimiza-
tion policies. We discuss several directions to extend the interface and further facilitate the devel-
opment of new policies.

Ensuring resource constraints: Although Nemo provides execution properties to specify
where to place computations and data, Nemo relies on the runtime to determine the actual re-
sources to acquire. To ensure that the resource constraints are met in the execution, we can incor-
porate the information into the IR DAG on the resource availability and acquisition or pre-launch
the execution DAG on a small set of data to test the runtime actions.

Declaring optimizations ahead of time: To enable compile-time analysis of runtime pass
conflicts and optimizations, we can provide the option to declare intended optimizations ahead
of time. For example, we can receive more explicit information on the predicates (e.g., is a shuffle
edge) and actions (e.g., store in memory) that a runtime pass intends to use.

Leveraging historical information: We can enable passes to use information on previous
executions of the same application and employ more sophisticated techniques such as machine
learning to determine how to transform the IR DAG. To facilitate this, we can maintain a database
that stores the information of the executed IR DAGs and their performance metrics and provide
an interface for passes to access the information in the database.

8 CONCLUSION

We presented Nemo, an optimization framework that provides fine control over distributed sched-
uling and communication of data-processing applications and at the same time ensures correct
application semantics. We hope Nemo serves as a platform for data processing optimization re-
search and development. Nemo is available at https://nemo.apache.org.
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